YLS-OP16 离线烧录器用户手册

UG-YLS-OP16

V1.0(Draft)

上海睿苔科技有限公司

版权所有,侵权必究

2023/7/10

文档名称: YLS-OP16 离线烧录器用户手册

日期	修订版本	描述	作者				
2023/7/10	V1.0	初始版本					

修订记录

目录

1	标识.						
2	简介.						
3	特征.						
4	功能1						
	4.1 约	扁程接口1					
	4.2 ¥	扁程模式3					
5	使用i	兑明3					
	5.1 Ì	殳 备连接说明					
	5.1.1	烧录器与 JTAG 目标板连接3					
	5.1.2	烧录器与 SPI 目标板连接4					
	5.1.3	烧录器与 Flash Socket 板连接5					
	5.1.4	USB 端口连接6					
	5.1.5	电源连接6					
	5.2 Ì	殳备配置说明 7					
	5.2.1	驱动安装7					
	5.2.2	驱动冲突8					
	5.2.3	功能配置8					
	5.2.4	文件管理10					
	5.2.5	配置设备11					
	5.3 Ì	殳 备操控说明12					
6	注意	事项					
7	规格	及参数14					

图目录

图 1	烧录器与 JTAG 目标板连接示意图	3
图 2	烧录器与 Flash Socket 板连接示意图	5
图 3	烧录器 USB 端口示意图	6
图 4	烧录器配置管理软件示意图	8
图 5	烧录器面板示意图	12

表目录

表 1 烧录器 JTAG 模式下的 64Pin 连接器表	2
表 2 烧录器 SPI 模式下的 64Pin 连接器表	2
表 3 JTAG 转接板 10Pin 连接器表	4
表 4 SPI 转接板 10Pin 连接器表	4
表 5 功能配置与需要文件关系表	9

1 标识

文档名称: YLS-OP16 离线烧录器用户手册

文档编号: UG-YLS-OP16

文档版本号: V1.0(Draft)

2 简介

YLS-OP16 是上海睿苔科技专门为易灵思 FPGA 研发的离线烧录器产品。在非 PC 应用环境下,可直接对易灵思全系列 FPGA 芯片的 Flash 固件进行离线烧录。 设备配置 16 路并行编程端口,可单独、部分或全路对目标板同时进行编程。具 备多路并行烧录、编程速度快、携带方便等特点,适用于批量生产、外场升级维 护等场景。

3 特征

- 16 路并行烧录通道
- 设备内存储容量: 512MB
- 支持编程接口: JTAG、SPI
- 支持 I/O 多电压选择
- 支持固件及密钥烧录
- USB供电及设备配置端口

4 功能

4.1 编程接口

离线烧录器配置有 2 个并行烧录接口,每个接口为 64Pin 的双排连接器,分别位于设备的上下两端。每个连接器内部以 8Pin 信号(上下各 4Pin),为一组独立的烧录端口,分别与面板上 1~16 路编号及指示灯对应。当设备工作在 JTAG 编程模式或 SPI 编程模式时,接口定义是不同的,下图分别描述。

Pin序号	端口号	信号名	描述	Pin序号	端口号	信号名	描述
1		VCC	参考电压输入信号。	2		GND	地信号。
3	DODT 1	TCK	JTAG时钟输入信号。	4	DODT 1	CRESETn	FPGA配置复位输入信号,低有效。
5	PORT 1	TMS	JTAG模式选择输入信号。	6	PORTI	N.C.	无连接。
7	1	TDI	JTAG数据输入信号。	8	1	TDO	JTAG数据输出信号。
9		VCC	参考电压输入信号。	10		GND	地信号。
11	DODTO	TCK	JTAG时钟输入信号。	12	DODTO	CRESETn	FPGA配置复位输入信号,低有效。
13	PORT 2	TMS	JTAG模式选择输入信号。	14	PORIZ	N.C.	无连接。
15	-	TDI	JTAG数据输入信号。	16	1	TDO	JTAG数据输出信号。
17		VCC	参考电压输入信号。	18		GND	地信号。
19		TCK	JTAG时钟输入信号。	20	DODT 1	CRESETn	FPGA配置复位输入信号,低有效。
21	PORT3	TMS	JTAG模式选择输入信号。	22	PORTS	N.C.	无连接。
23	1	TDI	JTAG数据输入信号。	24	1	TDO	JTAG数据输出信号。
25		VCC	参考电压输入信号。	26		GND	地信号。
27		TCK	JTAG时钟输入信号。	28	PORT 4	CRESETn	FPGA配置复位输入信号,低有效。
29	PORT 4	TMS	JTAG模式选择输入信号。	30		N.C.	无连接。
31	1	TDI	JTAG数据输入信号。	32		TDO	JTAG数据输出信号。
33		VCC	参考电压输入信号。	34		GND	地信号。
35		TCK	JTAG时钟输入信号。	36		CRESETn	FPGA配置复位输入信号,低有效。
37	PORTS	TMS	JTAG模式选择输入信号。	38	PORIS	N.C.	无连接。
39		TDI	JTAG数据输入信号。	40		TDO	JTAG数据输出信号。
41		VCC	参考电压输入信号。	42		GND	地信号。
43		TCK	JTAG时钟输入信号。	44	DODT 6	CRESETn	FPGA配置复位输入信号,低有效。
45	PORTO	TMS	JTAG模式选择输入信号。	46	PORIO	N.C.	无连接。
47		TDI	JTAG数据输入信号。	48		TDO	JTAG数据输出信号。
49		VCC	参考电压输入信号。	50		GND	地信号。
51		TCK	JTAG时钟输入信号。	52		CRESETn	FPGA配置复位输入信号,低有效。
53	PORT /	TMS	JTAG模式选择输入信号。	54	PORT	N.C.	无连接。
55		TDI	JTAG数据输入信号。	56		TDO	JTAG数据输出信号。
57		VCC	参考电压输入信号。	58		GND	地信号。
59		TCK	JTAG时钟输入信号。	60	DODT 0	CRESETn	FPGA配置复位输入信号,低有效。
61	PUKI 8	TMS	JTAG模式选择输入信号。	62	PURIS	N.C.	无连接。
63		TDI	JTAG数据输入信号。	64		TDO	JTAG数据输出信号。

表1 烧录器 JTAG 模式下的 64Pin 连接器表

表 2 烧录器 SPI 模式下的 64Pin 连接器表

1	Dia 🖻 🗉	<u>ب س</u>	1合 日 夕	+# >+	Dia 🛱 🗉	<u>م س</u> د	120万	111.14
ł	PIN序亏	「「「」」「「」」	16万省	加达	PIN序亏	「「「「」」」「「」」」「「」」」」「「」」」」」「「」」」」」」」「」」」」」	信亏省	/ / / / / / / / / / / / / / / / / / /
	1		VCC	参考电压输入信号。	2		GND	地信号。
	3	PORT 1	SCK	SPI时钟输入信号。	4	PORT 1	HOLDn	Flash保持或复位输出信号,低有效。
	5	-	CSn	SPI片选输入信号,低有效。	6	10111	WPn	Flash写保护输入信号,低有效。
ļ	7		DI	SPI数据输入信号。	8		DO	SPI数据输出信号。
	9		VCC	参考电压输入信号。	10		GND	地信号。
	11	DODT 2	SCK	SPI时钟输入信号。	12		HOLDn	Flash保持或复位输出信号,低有效。
	13	PORT 2	CSn	SPI片选输入信号,低有效。	14	FORTZ	WPn	Flash写保护输入信号,低有效。
	15		DI	SPI数据输入信号。	16		DO	SPI数据输出信号。
	17		VCC	参考电压输入信号。	18		GND	地信号。
	19	DODTO	SCK	SPI时钟输入信号。	20		HOLDn	Flash保持或复位输出信号,低有效。
	21	PORT 3	CSn	SPI片选输入信号,低有效。	22	PORTS	WPn	Flash写保护输入信号,低有效。
	23		DI	SPI数据输入信号。	24		DO	SPI数据输出信号。
	25		VCC	参考电压输入信号。	26		GND	地信号。
	27	PORT 4	SCK	SPI时钟输入信号。	28	PORT 4	HOLDn	Flash保持或复位输出信号,低有效。
	29		CSn	SPI片选输入信号,低有效。	30		WPn	Flash写保护输入信号,低有效。
	31		DI	SPI数据输入信号。	32		DO	SPI数据输出信号。
	33		VCC	参考电压输入信号。	34		GND	地信号。
	35		SCK	SPI时钟输入信号。	36		HOLDn	Flash保持或复位输出信号,低有效。
	37	PORTS	CSn	SPI片选输入信号,低有效。	38	PORIS	WPn	Flash写保护输入信号,低有效。
	39		DI	SPI数据输入信号。	40		DO	SPI数据输出信号。
	41		VCC	参考电压输入信号。	42		GND	地信号。
	43	DODTO	SCK	SPI时钟输入信号。	44		HOLDn	Flash保持或复位输出信号,低有效。
	45	PORTO	CSn	SPI片选输入信号,低有效。	46	PORIO	WPn	Flash写保护输入信号,低有效。
	47		DI	SPI数据输入信号。	48		DO	SPI数据输出信号。
	49		VCC	参考电压输入信号。	50		GND	地信号。
	51	DODT 7	SCK	SPI时钟输入信号。	52		HOLDn	Flash保持或复位输出信号,低有效。
1	53	PORT /	CSn	SPI片选输入信号,低有效。	54	PORT /	WPn	Flash写保护输入信号,低有效。
	55		DI	SPI数据输入信号。	56		DO	SPI数据输出信号。
1	57		VCC	参考电压输入信号。	58		GND	地信号。
l	59	DODTO	SCK	SPI时钟输入信号。	60		HOLDn	Flash保持或复位输出信号,低有效。
l	61	PORT 8	CSn	SPI片选输入信号,低有效。	62	PORT8	WPn	Flash写保护输入信号,低有效。
1	63		DI	SPI数据输入信号。	64		DO	SPI数据输出信号。

注:

1. 64Pin 连接器表内的信号方向定义,以用户目标板端为基准描述。

4.2 编程模式

- 编程接口选择: JTAG 模式、SPI 模式
- 编程速率选择: 3.125MHz、6.25MHz、12.5MHz
- 编程电压选择: 1.2V、1.5V、1.8V、2.5V、3.3V
- 编程功能选择: Bitstream 烧录、Tea 密钥烧录、AES/RSA 密钥烧录

5 使用说明

- 5.1 设备连接说明
- 5.1.1 烧录器与 JTAG 目标板连接

图 1 烧录器与 JTAG 目标板连接示意图

- 1. 将 2 块 JTAG 转接板,分别插入到烧录器两端的 64Pin 并行烧录端口内。
- 2. 依次将 16 条烧录线缆,从 JTAG 转接板的 10Pin 连接器到 FPGA 目标板的 JTAG 连接器进行连接。

文档名称: YLS-OP16 离线烧录器用户手册

表 3 JTAG 转接板 10Pin 连接器表

Pin序	号 信号名	描述	Pin序号	信号名	描述
1	TDO	JTAG数据输出信号。	2	N.C. / VCC	参考电压输入信号。当电阻未焊接时,处于 无连接状态(默认态);当电阻焊接时,作 为参考电压输入信号。
3	тск	JTAG时钟输入信号。	4	TDI	JTAG数据输入信号。
5	TMS	JTAG模式选择输入信号。	6	N.C.	无连接。
7	N.C.	无连接。	8	CRESETn	FPGA配置复位输入信号,低有效。
9	GND	地信号。	10	GND	地信号。

注:

- 1. JTAG 转接板 10Pin 连接器表内的信号方向定义,以用户目标板端为基准描述。
- 2. 用户目标板的JTAG 连接器可能存在尺寸及线序等差异,需要根据JTAG 转接板 10Pin 连接器表,自行定制烧录线缆及线缆插头。

5.1.2 烧录器与 SPI 目标板连接

- 1. 将 2 块 SPI 转接板,分别插入到烧录器两端的 64Pin 并行烧录端口内。
- 2. 依次将 16 条烧录线缆,从 SPI 转接板的 10Pin 连接器到 FPGA 目标板的 SPI 连接器进行连接。

表 4 SPI 转接板 10Pin 连接器表

Pin序号	信号名	描述	Pin序号	信号名	描述
1	DO	SPI数据输出信号。	2	N.C. / VCC	参考电压输入信号。当电阻未焊接时,处于 无连接状态(默认态);当电阻焊接时,作 为参考电压输入;
3	SCK	SPI时钟输入信号。	4	DI	SPI数据输入信号。
5	CSn	SPI片选输入信号,低有效。	6	WPn	Flash写保护输入信号,低有效。
7	N.C.	无连接。	8	HOLDn	Flash保持或复位输入信号,低有效。
9	GND	地信号。	10	GND	地信号。

注:

- 1. SPI 转接板 10Pin 连接器表内的信号方向定义,以用户目标板端为基准描述。
- 2. 用户目标板的 SPI 连接器可能存在尺寸及线序等差异,需要根据 SPI 转接板 10Pin 连接器表,自行定制烧录线缆及线缆插头。

5.1.3 烧录器与 Flash Socket 板连接

图 2 烧录器与 Flash Socket 板连接示意图

- 1. 将 2 块 Flash Socket 板,分别插入到烧录器两端的 64Pin 并行烧录端口内。
- 2. 下压 Flash Socket 底座,将待烧录 Flash 芯片放置于 Socket 槽位内,确保与槽 位完全对齐;松开底座,Socket 将自动收紧,固定住芯片。每个 Socket 底座, 配置有 2 个 Flash 芯片槽位。

注:

1. 目前只有 SOP-8-208mil 规格的 Flash Socket 板提供,用户如有其它规格的需求,可 自行定制或委托厂商定制。

5.1.4 USB 端口连接

图 3 烧录器 USB 端口示意图

烧录器配备了 2 路 USB 端口, 1 路用户配置管理端口和 1 路调试升级端口, 详细说明如下:

▶ 用户配置管理端口

位于图标 1 的位置。该端口包含 2 路 UART 串口协议通路,物理识别名分别为 MPOP_16_01 USER (interface0)和 MPOP_16_01 USER (interface1)。

- 1) Inferface0 作为配置管理链路,可实现对设备的功能配置及文件装载,需 配合计算机端的配置管理软件使用。
- 2) Inferface1 作为编程信息指示串口,会实时显示详尽的编程过程状态信息,需配合计算机端的串口软件使用。串口参数信息如下:
 - a) 波特率: 115200
 - b) 数据位:8
 - c) 校验位: None
 - d) 停止位:1
- ▶ 调试升级端口

位于图标 2 的位置。该端口包含 2 路 UART 串口协议通路,物理识别名分别为 MPOP_16_01 DBG (interface0)和 MPOP_16_01 DBG (interface1)。仅限厂商使用,用于烧录器功能调试及固件升级使用。

5.1.5 电源连接

烧录器采用 USB 供电。设备端接入 5.1.4 章节中任意一路 USB 端口即可;供电端需接入可提供 USB 电源输出的设备,如 PC、充电器、移动电源等。

5.2 设备配置说明

离线烧录器搭配有专用的配置管理软件。可以对设备进行功能配置,如烧录时钟频率、烧录模式配置等;还可以对烧录源文件进行装载管理,如JtagBridge文件、Bitstream文件与加密文件等。需要完成设备功能配置及文件装载后,才可以进行离线烧录操作。

5.2.1 驱动安装

使用配置管理软件之前,为了让计算机系统与烧录器外设进行关联,先要进 行驱动安装。详细步骤如下:

注:一般情况下,计算机只需安装一次驱动即可;如果本计算机因其它应用,已经安装过FTDI 驱动,需要先执行5.2.2章节的驱动卸载后,才能再执行驱动安装。

1. 运行 Zadig 驱动软件,选择 Options -> List All Device。

2. 下拉外设选择框,选中烧录器用户配置管理端口 MPOP_16_01 USER (interface0)。

Z Zadig	- 🗆 🗙
Device Options Help	
Integrated IR Camera (Interface 2)	✓ □ Edit
Integrated IR Camera (Interface 2) MPOP-16-01 USER (Interface 1)	
MPOP-16-01 USER (Interface 0)	ation
USB Receiver (Interface 1)	2
TP Precision Evo 2.4G	
APP Mode (Interface 4)	
BT_FUNCTION (Interface 0)	soft)
Integrated Camera (Interface 0)	
USB Receiver (Interface 0)	

3. 修改安装驱动包为 libusbK 后,点击 Replace Driver 控件,等待安装完成即可 关闭 Zadig 对话窗。

Zadig evice	Options	Help)						×
MPOP-1	6-01 USER	R (Interf	face 0)					~ C) Edit
Driver	FTDIBUS	(v2.12.	36.4)	-	libusbK (v3.1.0.0)	•	More I	informati	ion
							WinUSE	(libusb)	

4. 安装成功后,可在**设备管理器**中查看到,libusbK USB Devices 组内会新增 1 路命名为 MPOP-16*的外设。

5.2.2 驱动冲突

由于用户电脑可能已经安装过基于 FTDI 芯片的驱动程序,因此在连接烧录器以后,系统可能错误的将烧录器辨识为其它的外设。这种情况下,需要先将已 安装驱动进行卸载,再执行 5.2.1 章节的驱动安装。驱动卸载步骤如下:

- 1. 打开设备管理器, 接入烧录器用户配置管理端口。
 - a) 正常情况下, 端口(COM 和 LPT)组内, 会新增 2 路 USB Serial Port(COM*) 的外设。退出驱动卸载流程,正常执行 5.2.1 章节即可。
 - b) 冲突情况下,libusbK USB Devices 组内,会新增 1 路或 2 路命名为非 MPOP-16*的外设。执行驱动卸载流程。
- 2. 找到新增非 MPOP-16*的外设,右键选择卸载设备,打开卸载设备对话窗。
- 3. 勾选删除此设备的驱动程序软件,并点击卸载。
- 如 2 路端口均存在同样的问题,需依次对每路端口执行步骤 2~3。完成卸载 后,将同步骤 1 中 a)项的状态一致。

5.2.3 功能配置

Elitestek Offline Programmer Tool v1.0 –			×
Flash Clock Speed(MHz): 3.125 Bitstream Enable TEA Key Enable			
JTAG Bridge			
	E	sele	ct nly
Bitstream			
Quad Enable	e 🗌 E:	sele case On	ct nly
TEA Key			
		sele	ct
	E	ase O	nly
AES/RSA Key			
		sele	ct
	E	ase O	nly
MPOP-16-01 USER • [efresh	sta	rt

图 4 烧录器配置管理软件示意图

配置管理软件的功能配置区位于上图中,红色标识部分。如果烧录器已经完 成过文件装载,也可以在无需进行文件装载的情况下,单独进行功能配置修改。

功能配置选项说明如下:

Flash Clock Speed

Flash 烧录时钟频率选择,可设置 3.125MHz、6.25MHz、12.5MHz。由于目标 板存在信号环境不同,以及线缆的长短质量等差异,导致能够可靠烧录的速率不 同。用户可根据自己的生产环境自行测试,选择满足稳定烧录的最高频率为最佳 配置。

Bitstream Enable

比特流烧录使能。勾选后,烧录器将执行 FPGA 固件烧录功能;否则将忽略 该功能操作。

> TEA Key Enable

Tea 密钥烧录使能。勾选后,烧录器将执行 Tea 密钥烧录功能;否则将忽略 该功能操作。该功能的具体应用,请参考易灵思 Encrypt_Authentication 解决方 案。

ASE/RSA Key Enable

ASE/RSA 密钥烧录使能。勾选后,烧录器将执行 ASE/RSA 密钥烧录功能;否则将忽略该功能操作。易灵思钛金系列 FPGA,均配备有 ASE/RSA 硬核加密模块,可以对用户 FPGA 固件进行高安全性保护,详情请参考易灵思钛金系列 FPGA 用户手册。

注:

- 1. 易灵思 Trion 系列 FPGA 不支持该项功能。
- 2. AES/RSA 为一次性熔丝加密烧录,操作不可逆,用户需谨慎使用该功能项,厂商不 承担该功能的任何责任。

接口模式	支持功能	JTAG Bridge文件	Bitstream文件	Tea Key文件	AES/RSA Key文件
	Bitstream Enable	•	•		
JTAG模式	TEA Key Enable	•		•	
	ASE/RSA Key Enable				•
01措士	Bitstream Enable		•		
SPI供入	TEA Key Enable			•	

表 5 功能配置与需要文件关系表

5.2.4 文件管理

🚼 Elitestek Offline Programmer Tool v1.0	—		\times
Flash Clock Speed(MHz): 3.125 Bitstream Enable TEA Key Enable	nable		
JTAG Bridge			
		s	elect
		Eras	e Only
Bitstream			
		s	elect
Qua	ad Enable	Eras	e Only
TEA Key			
		s	elect
		Eras	e Only
AES/RSA Key			
		s	elect
		Eras	e Only
MPOP-16-01 USER	• ref	resh	start

配置管理软件的文件管理区位于上图中, 红色标识部分。执行特定的烧录功 能前, 需要提前装载好特定的文件。管理文件, 首先需要勾选对应文件的选项, 再在 select 对话框中指定装载文件的路径即可。如果无需装载文件, 只是希望将 保存在烧录器中的文件擦除, 只需勾选 Erase Only 即可, 设备将进行文件低级格 式化操作。

文件管理说明如下:

JTAG Bridge

JTAG 桥文件(hex 文件类型)。该文件为通过 JTAG 进行比特流烧录时,所必须的过程文件。由厂商提供,每种 FPGA 型号都有对应的 JTAG 桥文件,用户只需下载目标板 FPGA 对应的 JTAG 桥文件即可。

注:易灵思 Titanium 系列 FPGA 的JTAG 桥文件有 1.8V 及 3.3V 两种版本。用户需根据目标板 JTAG 硬件设计链路的实际电平标准选择。

Bitstream

比特流文件(hex 文件类型)。该文件为用户需要烧录的 FPGA 固件文件。如 果用户的 FPGA 固件选用的是 SPI x4 模式,则需要勾选 Quad Enable 选项。

Tea Key

Tea 密钥文件(txt 文件类型)。由三项密钥参数组成,其格式如下图中所示。

```
{
    "key": "1212121234343434565656565678787878",
    "round": 32,
    "delta": "9E3779B9"
}
```

注: Tea 密钥文件需要客户妥善保管,防止泄密。建议在完成密钥烧录生产任务后,清除保 存在烧录器设备中的密钥文件。

AES/RSA Key

AES/RSA 密钥文件(svf 文件类型)。用户在易灵思 EDA 开发工具中,输入自己的 AES/RSA 密码,即可自动生成该 svf 密钥文件。

注: AES/RSA 密码及 svf 密钥文件都需要客户妥善保管,防止泄密。建议在完成密钥烧录生 产任务后,清除保存在烧录器设备中的密钥文件。

5.2.5 配置设备

🚼 Elitestek Offline Programmer Tool v1.0	_		×
Flash Clock Speed(MHz): 3.125 Bitstream Enable TEA Key Enable	le		
JTAG Bridge			
		Eras	select se Only
Bitstream			
Quad	Enable	Eras	select se Only
TEA Key			
		Eras	select se Only
AES/RSA Key			
		Eras	select se Only
MPOP-16-01 USER	• re	fresh	start

配置管理软件的配置执行区位于上图中,红色标识部分。当完成功能配置区 及文件管理区的设置以后,就需要对设备进行烧录操作。

1. 在下拉对话框中,选择命名为 MPOP-16-01 USER 的配置管理端口。

注: 如下拉菜单中没有找到该端口,则点击 refresh 控件,刷新设备端口,查看是否出现; 如依然未找到,请检查线路连接及驱动安装状态。

- 2. 点击 start 控件, 启动配置烧录操作。信息区会显示烧录进度条及烧录状态 等信息。
- 3. 待配置烧录完成后,烧录器就可以与计算机进行分离,进行离线编程工作了。
- 5.3 设备操控说明

图 5 烧录器面板示意图

烧录器在启动离线编程操作前,需要先根据应用,将模式开关操控到对应的状态下。模式开关说明如下:

▶ 编程接口电压选择开关

位于图标1的位置,为旋钮开关,可设置1.2V、1.5V、1.8V、2.5V、3.3V五 个挡位。用户需根据目标板 JTAG 或 SPI 的接口电压,设置该项。选定的一挡位电 压指示灯会常亮,其它挡位指示灯会常灭。

注: 接口电压选择不正确的时候,可能会损坏目标板或无法成功烧录。

▶ 工作模式开关

位于图标 2 的位置,为二选开关。当设备进行配置操作时,必须调到 CONFIG 配置工作模式;当设备进行离线编程时,必须调到 NORMAL 正常工作模式。

▶ 接口模式开关

位于图标 3 的位置,为二选开关。当进行 JTAG 接口编程时,必须调到 JTAG 模式;当进行 SPI 接口编程时,必须调到 SPI 模式。

▶ I/O 通断开关

位于图标 4 的位置,为二选开关。由于带电插拔目标板编程连接器时,可能 会损坏目标器件。因此,用户在更换目标板时,需关断开关;在编程时,需开启 开关。当开关处于关闭状态时,1.2V、1.5V、1.8V、2.5V、3.3V 五个挡位的电压指

示灯会全灭;当开关处于开启状态时,选定的挡位电压指示灯会常亮。

注: 更换目标板时,如不涉及模式的更改,只需操控"编程接口通断开关"及"编程启动开 关"即可。

烧录器在完成模式开关的设置以后,可通过触发编程启动开关,启动编程操作。 说明如下:

▶ 编程启动开关

位于图标 5 的位置,为触发开关。按压一次,开启一次编程,单次触发。 注:在一次编程过程未结束时,重复触发无效。

▶ 编程端口指示灯

位于上图红色框的位置。当编程时,用户可根据该组指示灯判断编程的状态 信息。说明如下:

- 启动编程开关后,处于正常编程过程中的端口,指示灯会处于闪烁状态。 如存在已连接目标板,但指示灯为常灭状态的端口,说明链路异常,请 检查该端口硬件环境等。
- 完成编程后,烧录成功的端口,指示灯会处于常亮状态;烧录失败的端口,指示灯会处于常灭状态。
- 当全部端口处于常灭状态、部分或全部端口处于常亮状态,说明设备为 待机状态,可进行新的编程操作。
- ▶ 编程信息指示串口

烧录器 USB 用户配置管理端口还配置有一路 UART 协议串口,可指示更详尽的编程过程状态。一般情况下,用户只需根据指示灯判断即可,如遇到很难解决的编程故障问题,可接入计算机 USB 端口,通过串口软件显示信息分析。

6 注意事项

1. 多路烧录时, 仅支持同一烧录工程。

7 规格及参数

- ▶ 温度环境: 0-70 摄氏度
- ▶ 设备尺寸: 32mm*94mm*35mm
- ▶ 设备净重: 340g