
FIFO Core User Guide

UG-CORE-FIFO2-v1.8
October 2023
www.elitestek.com

Copyright © 2023. All rights reserved. 易灵思, the 易灵思 logo, the 钛金系列 logo, Quantum, Trion, and Efinity are trademarks of 易灵思, Inc. All other
trademarks and service marks are the property of their respective owners. All specifications subject to change without notice.



Contents

Introduction.................................................................................................................................................. 3

Features......................................................................................................................................................... 3

Device Support.............................................................................................................................................3

Resource Utilization and Performance.....................................................................................................3

Release Notes............................................................................................................................................... 5

Functional Description................................................................................................................................ 5
Ports................................................................................................................................................................................. 6
Synchronous FIFO Operation................................................................................................................................. 8
Asynchronous FIFO Operation.............................................................................................................................10
Asymmetric Width Operation.............................................................................................................................. 14
Programmable Full and Empty Signals............................................................................................................ 15
Reset.............................................................................................................................................................................. 16
Datacount.................................................................................................................................................................... 16
Latency.......................................................................................................................................................................... 16

Synchronous FIFO........................................................................................................................................ 17
Asynchronous FIFO......................................................................................................................................17

IP Manager................................................................................................................................................. 19

Customizing the FIFO................................................................................................................................20

FIFO Example Design................................................................................................................................ 22

FIFO Testbench...........................................................................................................................................24

Revision History.........................................................................................................................................24



FIFO Core User Guide

Introduction

Note:  The FIFO is available in the Efinity software v2021.1.165 with patch v2021.1.165.2.19 or higher. The FIFO (Legacy)
is obsoleted and replaced with FIFO in Efinity software v2021.2. You cannot migrate automatically from the FIFO
(Legacy) to the FIFO. Therefore, 易灵思® recommends that you use the FIFO for all new designs. You can continue to
use FIFO (Legacy) with the Efinity software v2021.1.165 or lower. However, the FIFO will not be supported in future
Efinity releases.

The FIFO core is a customizable first-in first-out memory queue that uses block RAM in
the FPGA for storage. The core has parameters you use to create a custom instance. For
example, you can set the FIFO depth, the data bus width, whether the read and write
domains are synchronous or asynchronous, etc.

Use the IP Manager to select IP, customize it, and generate files. The FIFO core has an
interactive wizard to help you set parameters. The wizard also has options to create a
testbench and/or example design targeting an 易灵思® development board.

Features

● Depths up to 131,072 words
● Data widths from 1 to 256 bits
● Symmetric or non-symmetric aspect ratios (read-to-write port ratios ranging from

1:16 to 16:1)
● Synchronous or asynchronous clock domains supports standard or

First–Word–Fall–Through (FWFT)
● Programmable full and empty status flags, set by user–defined parameters
● Almost full and almost empty flags indicate one word left
● Configurable handshake signals
● Asynchronous clock domain FWFT read mode
● FIFO datacount to indicate how many words available in FIFO
● Option to exclude optional flags
● Includes example designs targeting the Trion® T20 BGA256 Development Board
● Verilog RTL and simulation testbench

Device Support

Table 1: FIFO Core Device Support

FPGA Family Supported Device

Trion All

钛金系列 All

Resource Utilization and Performance

Note:  The resources and performance values provided are based on some of the supported FPGAs. These values are
just guidance and change depending on the device resource utilization, design congestion, and user design.

www.elitestek.com 3



FIFO Core User Guide

钛金系列 Resource Utilization and Performance

Table 2: Synchronous Clock FIFO

FPGA Mode Asymmetric
Width Ratio

Logic and
Adders

Flipflops Memory
Blocks

DSP48
Blocks

fMAX (MHz)
- clk_i(1)

Efinity
Version(2)

1:1 57 26 1 0 478Standard

1:2 55 25 2 0 544

1:1 87 36 1 0 446

Ti60
F225 C4

FWFT

1:2 82 34 2 0 512

2021.1

Table 3: Asynchronous Clock FIFO

fMAX
(1)FPGA Mode Asymmetric

Width Ratio
Logic and

Adders
Flipflops Memory

Blocks
DSP48
Blocks

rd_clk_i wr_clk_i

Efinity
Version(2)

1:1 104 69 1 0 501 582Standard

1:2 99 63 2 0 514 563

1:1 131 79 1 0 492 552

Ti60
F225 C4

FWFT

1:2 123 72 2 0 468 545

2021.1

Trion Resource Utilization and Performance

Table 4: Synchronous Clock FIFO

FPGA Mode Asymmetric
Width Ratio

LUTs Memory
Blocks

Multipliers fMAX (MHz)
- clk_i(1)

Efinity
Version(2)

1:1 65 4 0 170Standard

1:2 60 4 0 166

1:1 104 4 0 167

T20 BGA256

FWFT

1:2 96 4 0 173

2021.1

Table 5: Asynchronous Clock FIFO

fMAX
(1)FPGA Mode Asymmetric

Width Ratio
LUTs Memory

Blocks
Multipliers

rd_clk_i wr_clk_i

Efinity
Version(2)

1:1 159 4 0 169 205Standard

1:2 147 4 0 166 176

1:1 194 4 0 170 200

T20 BGA256

FWFT

1:2 179 4 0 162 233

2021.1

(1) Using default parameter settings.
(2) Using Verilog HDL.

www.elitestek.com 4



FIFO Core User Guide

Release Notes

You can refer to the IP Core Release Notes for more information about the IP core
changes. The IP Core Release Notes is available in the Efinity Downloads page under each
Efinity software release version.

Note:  You must be logged in to the Support Portal to view the IP Core Release Notes.

Functional Description

The FIFO core is a first-in first-out memory queue for any application requiring an
ordered storage buffer and retrieval. The core provides an optimized solution using the
block RAM in Trion® and 钛金系列 FPGAs. The core supports synchronous (read and write
use the same clock) and asynchronous (read and write use different clocks) clocking.

Figure 1: FIFO System Block Diagram

FIFO
rd_en_i
empty_o
almost_empty_o
prog_empty_o
rdata[DATA_WIDTH-1:0 ]

Read
Agent

wr_en_i
full_o
almost_full_o
prog_full_o
wdata[DATA_WIDTH-1:0 ]

Write
Agent

wr_ack_o
overflow_o
wr_datacount_o[(log2DEPTH)-1:0]

rd_valid_o
underflow_o
rd_datacount_o[(log2DEPTH)-1:0]

a_rst_i
a_wr_rst_i

Read
Clock

Domain

Write
Clock

Domain

wr_clk_i rd_clk_i
rst_busy
a_wr_rst_i

www.elitestek.com 5



FIFO Core User Guide

Ports

Table 6: FIFO Core Clock, Reset and Datacount Ports

Port Synchronous Asynchronous Direction Description

a_rst_i Input Reset. Asynchronous reset signal that
initializes all internal pointers and output
flags.

a_wr_rst_i Input The incoming reset signal should already
synchronized to the write clock domain.
You only use this port if you set the
BYPASS_RESET_SYNC parameter to 1.

a_rd_rst_i Input The incoming reset signal should already
synchronized to the read clock domain.
You only use this port if you set the
BYPASS_RESET_SYNC parameter to 1.

rst_busy Output When asserted, this signal indicate the core
is being reset.

wr_clk_i Input Write clock. All signals in the write domain
are synchronous to this clock.

rd_clk_i Input Read clock. All signals in the read domain
are synchronous to this clock.

clk_i Input Clock. All signals on the write and read
domains are synchronous to this clock.

wr_datacount_o [n-1:0] Output FIFO write domain data count. Applicable to
asymmetric width ratio.
n=log2[DEPTH].

rd_datacount_o [n-1:0] Output FIFO read domain data count. Applicable to
asymmetric width ratio.
n=log2[DEPTH].

datacount_o [n-1:0] Output FIFO data count. Applicable to symmetric
width ratio.
n=log2[DEPTH].

www.elitestek.com 6



FIFO Core User Guide

Table 7: FIFO Core Write Ports
For both synchronous and asynchronous clocks.

Port Direction Description

wdata [m-1:0] Input Write data. The input data bus used when writing to the FIFO buffer.
m=DATA_WIDTH.

wr_en_i Input Write enable. If the FIFO buffer is not full, asserting this signal causes data (on
wdata) to be written to the FIFO.

full_o Output Full flag. When asserted, this signal indicates that the FIFO buffer is full. Write
requests are ignored when the FIFO is full. Initiating a write while full is not
destructive to the FIFO.

almost_full_o Output Optional, almost full. When asserted, this signal indicates that only one more write
can be performed before the FIFO is full.

prog_full_o Output Optional, programmable full. This signal is asserted when the number of words in
the FIFO is greater than or equal to the assert threshold. It is deasserted when the
number of words in the FIFO is less than the negate threshold.

wr_ack_o Output Optional, write acknowledge. This signal indicates that a write request (wr_en_i)
during the prior clock cycle succeeded.

overflow_o Output Optional, overflow. This signal indicates that a write request (wr_en_i) during the
prior clock cycle was rejected because the FIFO buffer is full. Overflowing the FIFO
is not destructive to the contents of the FIFO.

Table 8: FIFO Core Read Ports
For both synchronous and asynchronous clocks.

Port Direction Description

rdata [m-1:0] Output Read data. The output data bus driven when reading the FIFO buffer.
m=DATA_WIDTH.

rd_en_i Input Read enable. If the FIFO buffer is not empty, asserting this signal causes data to be
read from the FIFO (output on rdata).

empty_o Output Empty flag. When asserted, this signal indicates that the FIFO buffer is empty.
When empty, Read requests are ignored. Initiating a read while empty is not
destructive to the FIFO.

almost_empty_o Output Optional, almost empty flag. When asserted, this signal indicates that only one
word remains in the FIFO buffer before it is empty.

prog_empty_o Output Optional, programmable empty. This signal is asserted when the number of words
in the FIFO buffer is less than or equal to the assert threshold. It is de-asserted
when the number of words in the FIFO exceeds the negate threshold.

rd_valid_o Output Optional, read valid. This signal indicates that valid data is available on the output
bus (rdata).

underflow_o Output Optional, underflow. Indicates that the read request (rd_en_i) during the previous
clock cycle was rejected because the FIFO buffer is empty. Underflowing the FIFO is
not destructive to the FIFO.

www.elitestek.com 7



FIFO Core User Guide

Synchronous FIFO Operation
The FIFO core signals are synchronized on the rising edge clock of the respective clock
domain. If you want to synchronize to the falling clock edge, use an inverter before
sending the signal to the clock input.

Figure 2: Synchronous FIFO Block Diagram

Synchronous FIFOclk_i
a_rst_i
datacount_o[(log2DEPTH)-1:0]

Control
Logic RAMwdata[DATA_WIDTH-1:0 ]

wr_en_i
rdata[DATA_WIDTH-1:0 ]
rd_en_i

Standard Mode

The following waveform shows the FIFO behavior in standard mode when it is written
until full and then read until empty. D1 and DN are the first and last data, respectively.

Figure 3: Synchronous FIFO Standard Mode Waveform

D1 D2 DN-1 DN DN+1D3

D1 D2 DN-1 DNDN-2

clk_i
wdata

wr_en_i
wr_ack_o

almost_full_o
full_o

overflow_o
underflow_o

empty_o
almost_empty_o

rd_en_i
rd_valid_o

rdata

If the system tries to write data DN+1 when full_o is asserted, the core ignores DN
+1 and asserts overflow_o. full_o deasserts during a read request, signaling that the
FIFO is ready for more write requests. When the last data is read from the FIFO, the core
asserts empty_o, indicating there is no more data. Further read requests when there is no
more data triggers an assertion on underflow_o.

www.elitestek.com 8



FIFO Core User Guide

First-Word-Fall-Through Mode

First-Word-Fall-Through (FWFT), is a mode in which the first word written into the FIFO
"falls through" and is available at the output without a read request. The following
waveform shows the behavior of the FIFO in FWFT mode when it is written until full and
then read until empty. D1 and DN are the first and last data, respectively.

The write behavior is the same as standard mode; the read behavior is different. When
the first word is written into the FIFO buffer, the core deasserts empty_o and asserts
rd_valid_o. There is one clock cycle of latency from wr_en_i to deassert empty_o and
assert rd_valid_o. Consequently, the first word that falls through the FIFO onto the
rdata also has the one additional clock cycle of latency.

D1 is available on the rdata output data bus without a read request (that is, rd_en_i is
not asserted). When the second data is written into the FIFO buffer, the output data does
not change until there is a read request. When it detects a read request, the FIFO core
outputs the next available data onto the output bus. If the current data is the last data
DN and the core detects a read request, it asserts empty_o and deasserts rd_valid_o.
Additional reads underflow the FIFO.

Figure 4: Synchronous FIFO FWFT Mode Waveform

D1 D2 DN-1 DN DN+1D3

D1 D3D2 DN-2

clk_i
wdata

wr_en_i
wr_ack_o

almost_full_o
full_o

overflow_o
underflow_o

empty_o
almost_empty_o

rd_en_i
rd_valid_o

rdata DN-1 DN

www.elitestek.com 9



FIFO Core User Guide

Asynchronous FIFO Operation
With an asynchronous FIFO, the two protocols can work in their respective clock domains
and still transfer reliable data to each other. When there is a write or read request
affecting its own respective domain’s flags, the asynchronous FIFO has 0 delays.
Whereas when affecting the other domain’s flags, it has a 1 clock cycle delay from its
respective domain plus 2 clock cycles of the other domain. For example, a write request
only re#ects on the read domain after 1 write clock cycle plus 2 read clock cycles and
vice versa. Enabling the PIPELINE_REGadds 1 more additional clock cycle of the other
domain on top of it. Refer to the latency table for asynchronous FIFO in Latency for more
info.

Figure 5: Asynchronous FIFO Block Diagram

Asynchronous FIFO

a_rst_i
wr_clk_i
wdata[DATA_WIDTH-1:0 ]
wr_en_i
wr_datacount_o[(log2DEPTH)-1:0]

Gray Decoder

Gray Encoder

Control
Logic

Gray Encoder

Gray Decoder

Control
Logic

RAM

Write Domain Read Domain

rd_clk_i
rdata[DATA_WIDTH-1:0 ]
rd_en_i
rd_datacount_o[(log2DEPTH)-1:0]

For asynchronous FIFO, a write operation a#ecting the write domain #ags and a read
operation a#ecting the read domain #ags have the same behavior as the synchronous
FIFO except when they are a#ecting crossed domain #ags. The following examples
emphasize the cross-clock domain flags update latency.

Standard Mode

The following figures show examples of asynchronous FIFO standard mode with a faster
read clock and write clock, respectively. The waveforms show the FIFO written until full
and a few read requests afterwards.

In the read example shown in Figure 6: Asynchronous FIFO Standard Mode Faster
Read Clock with PIPELINE_REG=0 on page 11, the read clock frequency is double
that of the write clock with the same phase. When there is a write request at node
2, empty_o does not deassert immediately; instead, it deasserts 1 write clock plus
2 clock read clocks later at node 6. Similarly, almost_empty_o deasserts at node 8,
which is 1 write clock plus 2 read clocks later after the second write request at node 4.
almost_full_o and full_o deassert at the same time at node 22 because there are 2
read requests detected before the write domain is synchronized at node 20.

www.elitestek.com 10



FIFO Core User Guide

Figure 6: Asynchronous FIFO Standard Mode Faster Read Clock with PIPELINE_REG=0

D1 D2

wr_clk_i
wdata

wr_en_i
wr_ack_o

almost_full_o
full_o

overflow_o
rd_clk_i

empty_o
almost_empty_o

rd_en_i
rd_valid_o

rdata

DN-1 DN

W
rit

e 
D

om
ai

n
R

ea
d 

D
om

ai
n

DN+1

D1 D2

0

1st write
request

1st read
request

2nd write
request

2nd read
request

1 wr_clk_i 2 rd_clk_i

1 rd_clk_i
2 wr_clk_i

1 rd_clk_i 2 wr_clk_i

1 wr_clk_i 2 rd_clk_i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

In the write example shown in Figure 7: Asynchronous FIFO Standard Mode Faster
Write Clock with PIPELINE_REG=0 on page 11, the write clock frequency is double
that of the read clock with the same phase. The empty_o deasserts at node 5 and
almost_empty_o deasserts at node 7. Each of these signals are affected by write
requests on node 1 and node 2 respectively. Read requests at node 11 and 13 reflect on
the write domain at node 15 and 17, respectively.

Figure 7: Asynchronous FIFO Standard Mode Faster Write Clock with PIPELINE_REG=0

D1 D2 DN-1 DN

W
rit

e 
D

om
ai

n
R

ea
d 

D
om

ai
n

DN+1

D1 D2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1st write
request

2nd write
request

1st read
request

2nd read
request

1 rd_clk_i 2 wr_clk_i

1 rd_clk_i 2 wr_clk_i

1 wr_clk_i 2 rd_clk_i

1 wr_clk_i 2 rd_clk_i

wr_clk_i
wdata

wr_en_i
wr_ack_o

almost_full_o
full_o

overflow_o
rd_clk_i

empty_o
almost_empty_o

rd_en_i
rd_valid_o

rdata

www.elitestek.com 11



FIFO Core User Guide

FWFT Mode

The following figures show example of asynchronous FIFO FWFT mode with faster read
clock and faster write clock. Both examples have the similar read request to write flags
update behavior as their standard mode counterpart. The write request to empty_o delay
of synchronous FIFO FWFT applies here as well, just that the additional clock is of the
read clock.

In the example shown inFigure 8: Asynchronous FIFO FWFT Mode Faster Read Clock
with PIPELINE_REG=0 on page 12, the read clock frequency is double that of the
write clock with the same phase. When there is a write request at node 2, empty_o
does not deassert immediately; instead, it deasserts 1 write clock plus 3 clocks later
at node 7, which has one additional clock cycle latency compared to standard mode.
Concurrently, the empty_o deasserts, the first data falls through the FIFO onto rdata,
and the rd_valid_o is asserted. The almost_empty_o behaves the same as standard
mode whereby it only needs 1 write clocks plus 2 clocks to deasserts at node 8, after the
second write request at node 4. Subsequent read request outputs the next available word
inside FIFO.

Figure 8: Asynchronous FIFO FWFT Mode Faster Read Clock with PIPELINE_REG=0

D1 D3D2 DN-1 DN

W
rit

e 
D

om
ai

n
R

ea
d 

D
om

ai
n

DN+1

D1 D3D2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1st write
request

2nd write
request

1st read
request

2nd read
request

1 rd_clk_i 2 wr_clk_i

1 rd_clk_i 2 wr_clk_i

1 wr_clk_i 3 rd_clk_i

1 wr_clk_i 2 rd_clk_i

wr_clk_i
wdata

wr_en_i
wr_ack_o

almost_full_o
full_o

overflow_o
rd_clk_i

empty_o
almost_empty_o

rd_en_i
rd_valid_o

rdata

In the example shown in Figure 9: Asynchronous FIFO FWFT Mode Faster Write Clock
with PIPELINE_REG=0 on page 13, the write clock frequency is double that of the
read clock with the same phase. Between positive edges of read clock at node 2 and
node 4, 2 write requests are detected at the same time. The empty_o deasserts 3 clock
cycles later at node 8, while almost_empty_o only requires 2 clock cycles to deassert
at node 6. This means that the FIFO read domain detected 2 write words at node 6,
however it is not ready for reading as the empty_o remains asserted. The first word only
falls through at the same time as empty_o is deasserted and rd_valid_o is asserted.
Always refer to empty_o instead of datacount_o value whenever you want to do a
read request. Refer to the Datacount on page 16 for more information about the
datacount_o signal.

www.elitestek.com 12



FIFO Core User Guide

Figure 9: Asynchronous FIFO FWFT Mode Faster Write Clock with PIPELINE_REG=0

D1 D2 D3 DN-1 DN

W
rit

e 
D

om
ai

n
R

ea
d 

D
om

ai
n

DN+1

D2 D3D1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

wr_clk_i
wdata

wr_en_i
wr_ack_o

almost_full_o
full_o

overflow_o
rd_clk_i

empty_o
almost_empty_o

rd_en_i
rd_valid_o

rdata

1st write
request

2nd write
request

1st read
request

2nd read
request

1 rd_clk_i

2 wr_clk_i

1 rd_clk_i 2 wr_clk_i

1 wr_clk_i 3 rd_clk_i

1 wr_clk_i 2 rd_clk_i

www.elitestek.com 13



FIFO Core User Guide

Asymmetric Width Operation
Asymmetric aspect ratios allow the input and output of the FIFO width and depth to be
configured in differently. You only need to configure the write width and depth, while the
read width and read depth are be computed automatically by the FIFO based on your
parameter settings. The following table lists the supported asymmetric width ratio.

Note:  The write width must be divisible by the selected ratio. For example, for 8:1 ratio, the write width can be 8, 16,
32, up to 256.

Table 9: Supported Asymmetric Width FIFO Ratio

Ratio Write Width Read Width Write Depth Read Depth

16:1 N N/16 2M 2M x 16

8:1 N N/8 2M 2M x 8

4:1 N N/4 2M 2M x 4

2:1 N N/2 2M 2M x 2

1:1 N N 2M 2M

1:2 N N*2 2M 2M / 2

1:4 N N*4 2M 2M / 4

1:8 N N*8 2M 2M / 8

1:16 N N*16 2M 2M / 16

In operations with 2:1 aspect ratio, the write width is two times the read width. In the
example below, each write request has 8-bit data which requires 2 read requests (4-bit
width per clock cycle) to free-up the entry.

Figure 10: 2:1 Aspect Ratio Example Waveform

clk_i

wr_en_i

wdata

wr_datacount_o

wr_ack_o

rd_en_i

rd_valid_o

rdata

rd_datacount_o

empty_o

AB

0 01 2 1

0 0

D

2 2 14 3

B CA

CD

www.elitestek.com 14



FIFO Core User Guide

In operations with 1:2 aspect ratio, the read width is two times the write width. In the
example below, each write request has 8-bit data where two write requests are required
to contribute to a single read word (16-bit width).

Figure 11: 1:2 Aspect Ratio Example Waveform

clk_i

wr_en_i

wdata

wr_datacount_o

wr_ack_o

rd_en_i

rd_valid_o

rdata

rd_datacount_o

empty_o

AB

0 01 2 3 24

0 0

EF01

11 2

ABCD

CD EF 01

Programmable Full and Empty Signals
The FIFO core supports user-defined full and empty signals with customized depths
(prog_full_o and prog_empty_o). To enable these signals, set the PROGRAMMABLE_FULL
or PROGRAMMABLE_EMPTY parameters as STATIC_SINGLE or STATIC_DUAL. Refer to
Parameters for more info on the available values.

Important:  For the asynchronous FIFO, these signals are synchronized to their respective clock domain’s available
words.

Table 10: prog_full_o Assert and Deassert Conditions

Value Type Condition

Assert number of words in FIFO ≥ PROG_FULL_ASSERTSTATIC_SINGLE

Deassert number of words in FIFO < PROG_FULL_ASSERT

Assert number of words in FIFO ≥ PROG_FULL_ASSERTSTATIC_DUAL

Deassert number of words in FIFO < PROG_FULL_NEGATE

Table 11: prog_empty_o Assert and Deassert Conditions

Value Type Condition

Assert number of words in FIFO ≤ PROG_EMPTY_ASSERTSTATIC_SINGLE

Deassert number of words in FIFO > PROG_EMPTY_ASSERT

Assert number of words in FIFO ≤ PROG_EMPTY_ASSERTSTATIC_DUAL

Deassert number of words in FIFO > PROG_EMPTY_NEGATE

To avoid erratic behavior, follow these rules for STATIC_DUAL modes:
● PROG_FULL_ASSERT ≥ PROG_FULL_NEGATE
● PROG_EMPTY_ASSERT ≤ PROG_EMPTY_NEGATE

www.elitestek.com 15



FIFO Core User Guide

Reset
The FIFO core uses active high asynchronous reset. By default, the reset signal (a_rst_i)
is synchronized to the respective clock domains before it being used in the core logic.
You must ensure that the rst_busy signal is low before the start any of the FIFO
operation.

If the reset synchronization is already included in the user logic, you can bypass the reset
synchronizer logic in FIFO core by setting the SKIP_RESET_SYNC parameter to value 1. In
this scenario, you should directly connect a_wr_rst_i and a_rd_rst_i ports.

Datacount
The FIFO core includes datacount signal as output. Synchronous FIFO enables
datacount_o while asynchronous FIFO enables both wr_datacount_o and
rd_datacount_o.

The datacount is zero when the FIFO is in empty and full state. You must ensure that the
width of datacount is log2(DEPTH) to get the correct value.

Note:  Always refer to the empty_o and full_o signals when reading or writing FIFO.

Latency
This section defines the latency of the output signals in the FIFO core. The output signals
latency are updated in response to the read or write requests. Latency is described in
the following waveform. A 0 latency means the signal is asserted or deasserted at the
same rising edge of the clock at which the write or read request is sampled. A latency of
1 means the signal is asserted or deasserted at the next rising edge of the clock.

www.elitestek.com 16



FIFO Core User Guide

Synchronous FIFO

Table 12: Synchronous FIFO Write Flags Update Latency (clk_i) Due to wr_en_i and rd_en_i
Signals

Port wr_en_i rd_en_i

wr_ack_o 0 –

full_o 0 0

almost_full_o 0 0

prog_full_o 0 0

overflow_o 0 –

Table 13: Synchronous FIFO Read Flags Update Latency Due to wr_en_i and rd_en_i Signals

Port wr_en_i rd_en_i

rd_valid_o – 0(3)

empty_o 0 0

almost_empty_o 0 0

prog_empty_o 0 0

underflow_o – 0

datacount_o 0 0

Asynchronous FIFO

Table 14: Asynchronous FIFO Write Flags Update Latency Due to wr_en_i

Port Latency (PIPELINE_REG=0) Latency (PIPELINE_REG=1)

wr_ack_o 0 0

full_o 0 0

almost_full_o 0 0

prog_full_o 0 0

overflow_o 0 0

wr_datacount_o 0 0

(3) OUTPUT_REG adds one latency to these signal.

www.elitestek.com 17



FIFO Core User Guide

Table 15: Asynchronous FIFO Read Flags Update Latency Due to wr_en_i

Port Latency (PIPELINE_REG=0) Latency (PIPELINE_REG=1)

rd_valid_o – –

empty_o 1 wr_clk_i + 2 rd_clk_i 1 wr_clk_i + 3 rd_clk_i

almost_empty_o 1 wr_clk_i + 2 rd_clk_i 1 wr_clk_i + 3 rd_clk_i

prog_empty_o 1 wr_clk_i + 2 rd_clk_i 1 wr_clk_i + 3 rd_clk_i

underflow_o – –

rd_datacount_o 1 wr_clk_i + 2 rd_clk_i 1 wr_clk_i + 3 rd_clk_i

Table 16: Asynchronous FIFO Write Flags Update Latency Due to rd_en_i

Port Latency (PIPELINE_REG=0) Latency (PIPELINE_REG=1)

wr_ack_o – –

full_o 1 rd_clk_i + 2 wr_clk_i 1 rd_clk_i + 3 wr_clk_i

almost_full_o 1 rd_clk_i + 2 wr_clk_i 1 rd_clk_i + 3 wr_clk_i

prog_full_o 1 rd_clk_i + 2 wr_clk_i 1 rd_clk_i + 3 wr_clk_i

overflow_o – –

wr_datacount_o 1 rd_clk_i + 2 wr_clk_i 1 rd_clk_i + 3 wr_clk_i

Table 17: Asynchronous FIFO Read Flags Update Latency Due to rd_en_i

Port Latency (PIPELINE_REG=0) Latency (PIPELINE_REG=1)

rd_valid_o 0(4) 0(5)

empty_o 0 0

almost_empty_o 0 0

prog_empty_o 0 0

underflow_o 0 0

rd_datacount_o 0 0

(4) OUTPUT_REG adds one latency to these signal.
(5) OUTPUT_REG adds one latency to these signal.

www.elitestek.com 18



FIFO Core User Guide

IP Manager

The Efinity® IP Manager is an interactive wizard that helps you customize and generate
易灵思® IP cores. The IP Manager performs validation checks on the parameters you
set to ensure that your selections are valid. When you generate the IP core, you can
optionally generate an example design targeting an 易灵思 development board and/or a
testbench. This wizard is helpful in situations in which you use several IP cores, multiple
instances of an IP core with different parameters, or the same IP core for different
projects.

Note:  Not all 易灵思 IP cores include an example design or a testbench.

Generating the FIFO Core with the IP Manager

The following steps explain how to customize an IP core with the IP Configuration wizard.

1. Open the IP Catalog.
2. Choose Memory > FIFO core and click Next. The IP Configuration wizard opens.
3. Enter the module name in the Module Name box.

Note:  You cannot generate the core without a module name.

4. Customize the IP core using the options shown in the wizard. For detailed
information on the options, refer to the Customizing the FIFO section.

5. (Optional) In the Deliverables tab, specify whether to generate an IP core example
design targeting an 易灵思® development board and/or testbench. These options are
turned on by default.

6. (Optional) In the Summary tab, review your selections.
7. Click Generate to generate the IP core and other selected deliverables.
8. In the Review configuration generation dialog box, click Generate. The Console in

the Summary tab shows the generation status.

Note:  You can disable the Review configuration generation dialog box by turning off the Show
Confirmation Box option in the wizard.

9. When generation finishes, the wizard displays the Generation Success dialog box.
Click OK to close the wizard.

The wizard adds the IP to your project and displays it under IP in the Project pane.

Generated Files

The IP Manager generates these files and directories:
● <module name>_define.vh—Contains the customized parameters.
● <module name>_tmpl.v—Verilog HDL instantiation template.
● <module name>_tmpl.vhd—VHDL instantiation template.
● <module name>.v—IP source code.
● settings.json—Configuration file.
● <kit name>_devkit—Has generated RTL, example design, and Efinity® project

targeting a specific development board.
● Testbench—Contains generated RTL and testbench files.

www.elitestek.com 19



FIFO Core User Guide

Customizing the FIFO

The core has parameters so you can customize its function. You set the parameters in the
General tab of the core's IP Configuration window.

Table 18: FIFO Core Parameter

Parameter Options Description

Device Family Trion , Titanium Select the target device family.
Default: Trion

Clock Mode Asynchronous,
Synchronous

Defines whether the FIFO read and write domain is synchronous or
asynchronous.
Default: Synchronous

FIFO Depth 16 – 131072 Defines the FIFO depth, which determines the maximum number of
words the FIFO can store before it is full. The depth is multiples of 2
from 16 – 217.
Default: 512

Data Bus Width 1 – 256 Defines the FIFO's read and write data bus widths.
Default: 32

FIFO Mode STANDARD, FWFT Defines the FIFO's read mode as standard or FWFT.
Default: STANDARD

Output Register Enable, Disable Adds one pipeline stage to rdata and rd_valid_o to improve timing
delay out from efx_ram.
Default: 1 (Enable)

Programmable Full Assert 1 – DEPTH Threshold value when prog_full_o is enabled. When Enable
Programmable Full Option is:
STATIC_SINGLE: Single threshold value for assertion and deassertion of
prog_full_o.
STATIC_DUAL: Upper threshold value for assertion of prog_full_o.
Default: 512

Enable Programmable Full
Option

NONE,
STATIC_SINGLE,
STATIC_DUAL

Controls the prog_full_o signal:
NONE: Disabled.
STATIC_SINGLE: Enabled, asserts and deasserts at a single threshold
value. (default)
STATIC_DUAL: Enabled, asserts or deasserts at different threshold
values.

Programmable Full Negate
Value

1 – Programmable
Full Assert Value

Use when PROGRAMMABLE_FULL is set to STATIC_DUAL. Sets the
lower threshold value for prog_full_o during deassertion.
Default: 512

Programmable Empty Assert
Value

0 – (FIFO Depth-1) Threshold value when prog_empty_o is enabled. When Enable
Programmable Full Option is:
STATIC_SINGLE: Single threshold value for assertion and deassertion of
prog_empty_o.
STATIC_DUAL: Lower threshold value for assertion of prog_empty_o.
Default: 0

Programmable Empty Negate
Value

Programmable
Empty Assert

Value – (DEPTH-1)

Use when PROGRAMMABLE_EMPTY is set to STATIC_DUAL. Sets the
upper threshold value for prog_empty_o during deassertion.
Default: 0

Enable Programmable Empty
Option

NONE,
STATIC_SINGLE,
STATIC_DUAL

Controls the prog_empty_o signal:
NONE: Disabled.
STATIC_SINGLE: Enabled, asserts and deasserts at a single threshold
value. (default)
STATIC_DUAL: Enabled, asserts or deasserts at different threshold
values.

www.elitestek.com 20



FIFO Core User Guide

Parameter Options Description

Optional Signals Enable, Disable Enables the optional signals: wr_ack_o, almost_full_o, overflow_o,
rd_valid_o, almost_empty_o and underflow_o. You can disable this
feature to improve macro timing.
Default: Enable

Pipeline Register Enable, Disable Applicable to asynchronous FIFO mode only. Adds one latency of
the opposing clock domain to all applicable output signals when
wr_en_i or rd_en_i signal is asserted. Enable this feature to improve the
macro timing. 易灵思 recommends that you enable this parameter in
asynchronous FIFO mode.
Default: Enable

Synchronization Stages 1 – 4 Configures the number of synchronization stages for the cross clock
domain signals in asynchronous mode. This increases the latency of
opposing clock domain status flag signals.
Default: 2

Asymmetric Width Ratio 16:1, 8:1, 4:1,
2:1, 1:1, 1:2,
1:4, 1:8, 1:16

Selects asymmetrical width ratios. 1:1 is symmetric width ratio.
Default: 1:2

Reset Synchronizer Enable, Disable Disable if you do not want the reset signal to be synchronized to the
respective clock domain during asynchronous mode. Ensure that the
supplied reset signal is synchronized to the respective FIFO clock
domain in design upper level order for the FIFO reset to operate
correctly.
Default: Enable

www.elitestek.com 21



FIFO Core User Guide

FIFO Example Design

You can choose to generate the example design when generating the core in the IP
Manager Configuration window. Compile the example design project and download the
.hex or .bit file to your board.

Important:  易灵思 tested the example design generated with the default parameter options only.

The example design targets the Trion® T20 BGA256 Development Board. The design
demonstrates the continuous read-write operation using both symmetric and
asymmetric width FIFO as well as using FIFO status signal as part of the read write
control operation.

The data generator produces continuous 16-bit incremental data once the system reset
is release. The 16-bit data is directly written into the asymmetric FIFO (configured as 1:2
ratio including asynchronous clock settings). The same 16-bit data goes through the data
accumulator block to assemble a 32-bit data before written into the symmetric FIFO. This
process is to ensure that the write and read data has a 1:1 ratio.

Both FIFO read operations are triggered only after prog_full_o signal of asymmetric
FIFO is asserted. The programmable full threshold is set to a quarter of the total write
depth. The FIFO read-write operation can run continuously without hitting FIFO full /
FIFO empty due to:
● The FIFO write clock is running two times faster than the read clock
● Both write and read clock is generated from the same PLL (0 PPM)

In order to observe asymmetric FIFO full or empty behavior, you can trigger a stop read
or stop write to interrupt the FIFO read / write operation through the pushbuttons.

Figure 12: FIFO Example Design

Data
Comparison

led_fifo_full

led_fifo_empty

block write

block read

led_rdata_error

prog_full_oExample Design

Storage
(Symmetric
1:1 FIFO)

DUT
(Asymmetric

1:2 FIFO)

Read/Write
Controller

Read/Write
Controller

Data
Accumulator

Data
Generator

www.elitestek.com 22



FIFO Core User Guide

Table 19: Example Design Input and Output

Input / Output Description

LED D3 Upon power-up, LED D3 blinks continuously to indicate that the design is running on the
board.

LED D4 Turns on when there is read data error during comparison.
Pressing SW5 / SW6 button can also cause read data comparison error.

LED D5 Turns on when asymmetric FIFO is full. Occurs when pressing SW6 pushbutton.

LED D6 Turns on when asymmetric FIFO is empty. Occurs when pressing SW5 pushbutton.

Pushbutton SW4 System reset. Use system reset to clear read comparison error.

Pushbutton SW5 Stop write. Triggers a stop write and causes the asymmetric FIFO to hit full status.

Pushbutton SW6 Stop read. Triggers a stop read and causes the asymmetric FIFO to hit empty status.

Table 20: 钛金系列 Synchronous Example Design Implementation

FPGA Mode Asymmetric
Width
Ratio

Logic and
Adders

Flipflops Memory
Blocks

DSP48
Blocks

fMAX (MHz)
- clk_i(6)

Efinity
Version(7)

1:1 207 162 3 0 408Standard

1:2 204 160 4 0 449

1:1 241 207 3 0 469

Ti60
F225 C4

FWFT

1:2 229 169 4 0 450

2021.1

Table 21: 钛金系列 Asynchronous Example Design Implementation

fMAX
(6)FPGA Mode Asymmetric

Width Ratio
Logic and

Adders
Flipflops Memory

Blocks
DSP48
Blocks

rd_clk_i wr_clk_i

Efinity
Version(7)

1:1 253 206 3 0 280 478Standard

1:2 242 199 4 0 290 454

1:1 267 216 3 0 275 509

Ti60
F225 C4

FWFT

1:2 253 208 4 0 277 491

2021.1

Table 22: Trion® Example Design Implementation

fMAX (MHz)(6)FPGA Clock and
Read Mode

LUTs Memory
Blocks

I/Os

wr_clk_i rd_clk_i

Efinity®

Version(7)

Asynchronous
Standard

451 6 12 165 166T20 BGA256
C4

Asynchronous FWFT 470 6 12 176 160

2021.1

(6) Using default parameter settings.
(7) Using Verilog HDL.

www.elitestek.com 23



FIFO Core User Guide

FIFO Testbench

You can choose to generate the testbench when generating the core in the IP Manager
Configuration window.

Note:  You must include all .v files generated in the /testbench directory in your simulation.

易灵思 provides a simulation script for you to run the testbench quickly using the
Modelsim software. To run the Modelsim testbench script, run vsim -do modelsim.do
in a terminal application. You must have Modelsim installed on your computer to use this
script.

Revision History

Table 23: Revision History

Date Version Description

October 2023 1.8 Added description for wr_datacount_o, rd_datacount_o and
datacount_o port. (DOC-1513)

February 2023 1.7 Added note about the resource and performance values in
the resource and utilization table are for guidance only.

January 2023 1.6 Corrected reset signal name.

August 2022 1.5 Removed description about reset pulse width requirement.
(DOC-903)

April 2022 1.4 Corrected supported data width in feature list.

January 2022 1.3 Updated resource utilization table and Asymmetric Width
Ratio parameter options. (DOC-700)

December 2021 1.2 Core included in main Efinity release.

October 2021 1.1 Added note to state that the fMAX in Resource Utilization and
Performance, and Example Design Implementation tables
were based on default parameter settings.
Corrected the 钛金系列 FPGA used in Resource Utilization and
Performance tables.

September 2021 1.0 Initial release.

www.elitestek.com 24


	Contents
	Introduction
	Features
	Device Support
	Resource Utilization and Performance
	Release Notes
	Functional Description
	Ports
	Synchronous FIFO Operation
	Asynchronous FIFO Operation
	Asymmetric Width Operation
	Programmable Full and Empty Signals
	Reset
	Datacount
	Latency
	Synchronous FIFO
	Asynchronous FIFO


	IP Manager
	Customizing the FIFO
	FIFO Example Design
	FIFO Testbench
	Revision History

