
HyperRAM Controller Core
User Guide

Copyright © 2023. All rights reserved. 易灵思, the 易灵思 logo, the 钛金系列 logo, Quantum, Trion, and Efinity are trademarks of 易灵思, Inc. All other
trademarks and service marks are the property of their respective owners. All specifications subject to change without notice.

www.elitestek.com
November 2023
UG-CORE-HYPERRAM-v2.7

Contents

Introduction... 3

Features..3

Device Support.. 3

Resource Utilization and Performance..4

Release Notes.. 4

Functional Description...5
Ports... 7
AXI User Interface... 11

AXI Addressing.. 11
Unaligned Address Access.. 11
AXI Read and Write Operation... 12

Native User Interface.. 12
PLL Auto Calibration Flow... 13
PLL Manual Calibration Flow...14
HyperRAM Controller Operation.. 14

Interface Designer Settings...17
PLL Auto Calibration and PLL Manual Calibration... 17
Soft Logic Calibration... 19

IP Manager.. 20

Customizing the HyperRAM Controller.. 21

HyperRAM Controller Example Design.. 23
Virtual I/O Debugger Settings.. 25

HyperRAM Controller Testbench.. 25

Revision History...26

Note: The HyperRAM Controller is only meant to communicate with single discrete HyperRAM chip.

FPGA Family Supported Device

Trion All(1)

All

(1) Soft Logic Calibration mode only.

3

钛金系列

create a testbench and/or example design targeting an 易灵思® development board.
core has an interactive wizard to help you set parameters. The wizard also has options to
Use the IP Manager to select IP, customize it, and generate files. The HyperRAM Controller

memories.
applications. The HyperRAM Controller core interfaces 钛金系列 FPGAs with HyperRAM
board and thus is ideal for scalable solutions especially in automotive, industrial, and IoT
flexibility allows designers to reduce the number of traces needed on the printed circuit
HyperRAM Controller has two width options, x8 (13 I/O pins) and x16 (22 I/O pins). This
HyperRAM is a memory device that uses the HyperBus protocol. The

Introduction

HyperRAM Controller Core User Guide

W958D6NWS)HyperRAM with 钛金系列 FPGAs.
易灵思® have verified HyperRAM Controller core for the Winbond (part no:

www.elitestek.com

Table 1: HyperRAM Controller Core Device Support

Device Support

 and 钛金系列 Ti60 F100S3F2 FPGA
• Includes example designs targeting the 钛金系列 Ti60 F225 Development Board
• Includes Verilog HDL RTL and simulation testbench
• 32, 64, 128, and 256 bit data width
• AXI3 half-duplex or native interface to core
• Data and RWDS calibration
• Linear and wrap burst transfer
• Supports up to 256 Mb HyperRAM
• Supports double-data rates of up to 800 MBps for x16 width configuration
• x8 and x16 RAM bit widths
• PLL auto calibration, PLL manual calibration, and soft logic calibration

Features

HyperRAM Controller Core User Guide

Resource Utilization and Performance

Note: The resources and performance values provided are based on some of the supported FPGAs.
These values are just guidance and change depending on the device resource utilization, design
congestion, and user design.

fMAX (MHz)(3)FPGA Calibration
Mode(2)

Logic and
Adders

Flip-flops Memory
Blocks

DSP48
Blocks

System
Clock

HyperRAM
Clock

Efinity®

Version(4)

AXI PLL Auto 2,473 1,121 9 0 256 291

AXI PLL
Manual

637 454 9 0 234 267

Native
PLL Auto

2,307 1,187 4 0 246 341

Ti60 F225
C4

lNative PLL Manua 548 520 4 0 239 415

2021.2

Release Notes
You can refer to the IP Core Release Notes for more information about the IP core changes.
The IP Core Release Notes is available in the Efinity Downloads page under each Efinity
software release version.

Note: You must be logged in to the Support Portal to view the IP Core Release Notes.

(3) Using default parameter settings.
(2) 32 bit data width.
(4) Using Verilog HDL.

4

Table 2: 钛金系列 Resource Utilization and Performance

www.elitestek.com

Figure 1: HyperRAM Controller PLL Calibration Block Diagram

rst
ram_clk
ram_clk_cal
io_axi_clk
hbc_cal_pass
hbc_cal_debug_info[15:0]

hbc_rst_n

AXI3 or Native Interface

hbc_cs_n

hbc_ck_p_HI
hbc_ck_p_LO

hbc_ck_n_HI
hbc_ck_n_LO

hbc_dq_OUT_HI[n-1:0]
hbc_dq_OUT_LO[n-1:0]
hbc_dq_IN_HI[n-1:0]
hbc_dq_IN_LO[n-1:0]
hbc_dq_OE[n-1:0]

hbc_rwds_OUT_HI[n-1:0]
hbc_rwds_OUT_LO[n-1:0]
hbc_rwds_IN_HI[m-1:0]
hbc_rwds_IN_LO[m-1:0]
hbc_rwds_OE[m-1:0]

hbc_cal_SHIFT_ENA
hbc_cal_SHIFT_SEL[4:0]
hbc_cal_SHIFT[2:0]

hbc_ck_n

hbc_ck_p

hbc_cs_n

hbc_rwds

hbc_dq

hbramClk
hbramClk90
hbramClk_cal

hbramClk

hbramClk

hbramClk_cal

hbramClk_cal

hbramClk;invert

hbramClk90;invert

hbramClk90;invert

HyperRAM
Controller

(PLL
Calibration)

PLL

iDDIO

oDDIO

iDDIO

oDDIO

oDDIO

oDDIO

Register

5

• Soft logic calibration—Uses extra logic to calibrate incoming data from the HyperRAM.
 capture the incoming data without using the auto calibration logic.

• PLL manual calibration—Allows you to manually calibrate the PLL phase settings used to
 data from the HyperRAM.

• PLL auto calibration—Utilizes the 钛金系列 PLL's dynamic shifting to calibrate incoming
The HyperRAM Controller core supports three calibration modes:

Functional Description

HyperRAM Controller Core User Guide

www.elitestek.com

recompilations, therefore 易灵思 recommends that you use PLL auto calibration for 钛金系列FPGAs.
Note: The PLL calibration mode HyperRAM Controller I/O's path is not impacted by design

HyperRAM Controller Core User Guide

Figure 2: HyperRAM Controller PLL Manual Calibration Block Diagram

dyn_pll_phase_sel[2:0]

rst
ram_clk
ram_clk_cal
io_axi_clk
hbc_cal_pass
hbc_cal_debug_info[15:0]

hbc_rst_n

AXI3 or Native Interface

hbc_cs_n

hbc_ck_p_HI
hbc_ck_p_LO

hbc_ck_n_HI
hbc_ck_n_LO

hbc_dq_OUT_HI[n-1:0]
hbc_dq_OUT_LO[n-1:0]
hbc_dq_IN_HI[n-1:0]
hbc_dq_IN_LO[n-1:0]
hbc_dq_OE[n-1:0]

hbc_rwds_OUT_HI[n-1:0]
hbc_rwds_OUT_LO[n-1:0]
hbc_rwds_IN_HI[m-1:0]
hbc_rwds_IN_LO[m-1:0]
hbc_rwds_OE[m-1:0]

hbc_cal_SHIFT_ENA
hbc_cal_SHIFT_SEL[4:0]
hbc_cal_SHIFT[2:0]

hbc_ck_n

hbc_ck_p

hbc_cs_n

hbc_rwds

hbc_dq

hbramClk
hbramClk90
hbramClk_cal

hbramClk

hbramClk

hbramClk_cal

hbramClk_cal

hbramClk;invert

hbramClk90;invert

hbramClk90;invert

HyperRAM
Controller

(PLL Manual
Calibration)

PLL

iDDIO

oDDIO

iDDIO

oDDIO

oDDIO

oDDIO

Register

dyn_pll_phase_en

Figure 3: HyperRAM Controller Soft Logic Calibration Block Diagram

rst
ram_clk

io_axi_clk
hbc_cal_pass
hbc_cal_debug_info[15:0]

hbc_rst_n

hbc_cs_n

hbc_ck_p_HI
hbc_ck_p_LO

hbc_ck_n_HI
hbc_ck_n_LO

hbc_dq_OUT_HI[n-1:0]
hbc_dq_OUT_LO[n-1:0]

hbc_dq_IN_HI[n-1:0]
hbc_dq_OE[n-1:0]

hbc_rwds_OUT_HI[n-1:0]
hbc_rwds_OUT_LO[n-1:0]

hbc_rwds_IN_HI[m-1:0]
hbc_rwds_OE[m-1:0]

hbc_ck_n

hbc_ck_p

hbc_cs_n

hbc_rwds

hbc_dq

hbramClk

hbramClk

hbramClk;invert

hbramClk90;invert

hbramClk90;invert
HyperRAM
Controller
(Soft Logic
Calibration) oDDIO

oDDIO

oDDIO

oDDIO

Register

AXI3 or Native Interface

6www.elitestek.com

HyperRAM Controller Core User Guide

Ports

Table 3: HyperRAM Controller Ports

Port Direction Description

hbc_cs_n Input Bus transactions are initiated with a logic high-to-low transition. Bus
transactions are terminated with a logic low-to-high transition. The master
device has a separate CS# signal for each slave.

rst Input Core asynchronous reset, active high.

ram_clk Input RAM operating clock.

ram_clk_cal RAM calibration clock.
Used for PLL auto and manual calibration only.

hbc_rst_n Output When logic low, the slave device self-initializes and returns to the standby
state.
RWDS and DQ signals are placed into the high-Z state when the RESET#
signal is low.

hbc_cal_pass Output Indicates calibration is passing.

hbc_cal_debug_info
[15:0]

Output
Bit Description

15:8 Delay steps that received matched calibration data.
One-hot encoded.
Bit 0: Delay step 0 received matched data
Bit 1: Delay step 1 received matched data
Bit 2: Delay step 2 received matched data
Bit 3: Delay step 3 received matched data
Bit 4: Delay step 4 received matched data
Bit 5: Delay step 5 received matched data
Bit 6: Delay step 6 received matched data
Bit 7: Delay step 7 received matched data

7:5 Locked down PLL phase shifted step

4:2 Calibrated RDO delay setting

1 Calibration pass

0 Calibration done

hbc_ck_p_HI Output

hbc_ck_p_LO Output

hbc_ck_n_HI Output

hbc_ck_n_LO Output

Differential Clock:
Command, address, and data information is output with respect to the
crossing of the CK and CK# signals.
Single Ended Clock:
CK# is not used, only a single ended CK is used. The clock is not required
to be free-running.

hbc_dq_OUT_HI [n-1:0] Output

hbc_dq_OUT_LO
[n-1:0]

Output

DQ output ports for command, address, and data.
n = 8 (x8 mode), 16 (x16 mode)

hbc_dq_OE [n-1:0] Output DQ output enable port.
n = 8 (x8 mode), 16 (x16 mode)

7www.elitestek.com

HyperRAM Controller Core User Guide

Port Direction Description

hbc_dq_IN_HI [n-1:0] Input DQ input ports for data.
n = 8 (x8 mode), 16 (x16 mode)

hbc_dq_IN_LO[n-1:0] Input DQ input ports for data.
n = 8 (x8 mode), 16 (x16 mode)

hbc_rwds_OUT_HI
[m-1:0]

Output

hbc_rwds_OUT_LO
[m-1:0]

Output

RWDS output ports for data mask during write operation.
m = 1 (x8 mode), 2 (x16 mode)

hbc_rwds_IN_HI
[m-1:0]

Input RWDS input ports for latency indication, also center-aligned reference
strobe for read data.
m = 1 (x8 mode), 2 (x16 mode)

hbc_rwds_IN_LO
[m-1:0]

Input RWDS input ports for latency indication, also center-aligned reference
strobe for read data.
m = 1 (x8 mode), 2 (x16 mode)
Applicable in PLL auto and manual calibration only.

hbc_rwds_OE [m-1:0] Output RWDS output enable port.
m = 1 (x8 mode), 2 (x16 mode)

hbc_cal_SHIFT_ENA Output Enables PLL dynamic shifting.
Applicable in PLL auto and manual calibration only.

hbc_cal_SHIFT_SEL[4:0] Output Selects PLL output.
Applicable in PLL auto and manual calibration only.

hbc_cal_SHIFT[2:0] Output Delay steps value.
Applicable in PLL auto and manual calibration only.

dyn_pll_phase_en Input Enable PLL phase adjustment. Used for PLL manual calibration only.
1'b0: Enable
1'b1: Disable

dyn_pll_phase_sel [2:0] Input PLL phase adjustment. 8 steps of the PLL dynamic phase shift settings.
Used for PLL manual calibration only.

8www.elitestek.com

HyperRAM Controller Core User Guide

Table 4: HyperRAM Controller AXI Ports

Port Direction Description

io_axi_clk Input AXI interface operating frequency.

io_arw_valid Input Indicates that the channel is signaling a valid write/read address and
control information.

io_arw_ready Output Indicates that the controller is ready to accept an address and
associated control signals.

io_arw_payload_addr [31:0] Input The write address gives the address of the first transfer in a write/read
burst transaction.

io_arw_payload_id [7:0] Input Identification tag for the write/read address group of signals.

io_arw_payload_len [7:0] Input Burst length. Indicates the exact number of transfers in a burst.
Determines the number of data transfers associated with the address.
Effective burst length = io_arw_payload_len + 1

io_arw_payload_size [2:0] Input Burst size. Indicates the size of each transfer in the burst.
3'b000: 1
3'b001: 2
3'b010: 4
3'b011: 8
3'b100: 16
3'b101: 32
3'b110: 64
3'b111: 128

io_arw_payload_burst [1:0] Input Burst type. The burst type and the size information, determines
how the address for each transfer within the burst is calculated. The
controller does not support fixed burst, only linear burst.
2'b00, b01: Linear burst
2'b10: Wrap burst

io_arw_payload_lock Input Reserved.

io_arw_payload_write Input Indicates the channel is accepting a write or read transfer.
1'b0: Read
1'b1: Write

io_w_payload_id [7:0] Input ID tag of the write data transfer.

io_w_valid Input Write valid. Indicates that valid write data and strobes are available.

io_w_ready Output Write ready. Indicates that the slave can accept the write data.

io_w_payload_data [n-1:0] Input Write data.
n = AXI_DBW

io_w_payload_strb [n-1:0] Input Write strobes. Indicates which byte lanes hold valid data. There is one
write strobe bit for each eight bits of the write data bus.
n = AXI_DBW/8

io_w_payload_last Input Write last. Indicates the last transfer in a write burst.

io_b_valid Input Write response valid. Indicates that the channel is signaling a valid
write response.

io_b_ready Output Response ready. Indicates that the master can accept a write response.

io_b_payload_id [7:0] Output Response ID tag. ID tag of the write response.

9www.elitestek.com

HyperRAM Controller Core User Guide

Port Direction Description

io_r_valid Output Read address valid. Indicates that the channel is signaling valid read
address and control information.

io_r_ready Input Read ready. Indicates that the master can accept the read data and
response information.

io_r_payload_data Output Read data.

io_r_payload_id [7:0] Output Read ID tag. Identification tag for the read data group of signals
generated by the controller.

io_r_payload_resp [1:0] Output Read response. Indicates the status of the read transfer. This controller
only responds ‘b00 or OKAY.

io_r_payload_last Output Read last. Indicates the last transfer in a read burst.

Table 5: HyperRAM Controller Native Ports

Port Direction Description

native_ram_rdwr Input HyperRAM write/read control.
1'b0 : Target for write
1'b1 : Target for read

native_ram_en Input Initiate a single pulse to trigger controller write/read to HyperRAM.
For write operation, you must ensure that the data stored in the write
buffer fulfills the configured burst length requirement before pulsing
the signal.
After pulsing the signal, monitor the native_ctrl_idle signal transit into
low state to indicate the controller has started to process the request.

native_ram_burst_len [11:0] Input HyperRAM transaction burst length.
You can dynamically change the burst length to maximize the transfer
efficiency while still fulfilling the memory CS# maximum low time, 4 μs
(typical).
The burst length number must not exceed the CS# maximum low time
which is governed by the HyperRAM specification.
FIFO Depth Size = ((DQ Width * 2)/ Data width) * native_ram_burst_len
For example: 512 burst length with x16 RAM at 200 MHz will have
approximately 2.6 μs CS# low time and is equivalent to 512 data words
of the 32-bits native write data width

native_ram_address [31:0] Input HyperRAM write/read address. The address width depends on the
memory density.

native_wr_en Input Buffer write enable. Assert this signal when you want to place the write
data into the write buffer.
You can fill-in the write buffer at any time if the write buffer is not full
indicated by the native_wr_buf_ready signal.

native_wr_data [n-1:0] Input Write data is placed in the write buffer before the native_ram_en signal
is pulsed.
n = AXI_DBW

native_wr_datamask [n/8-1:0] Input Write data mask. Set all to logic low if you do not use the write data
mask. Otherwise, drive the signal per data byte (8 bits) granularity.
n = AXI_DBW

native_rd_data[n-1:0] Output Read data width.
n = AXI_DBW

native_rd_valid Output Read valid width. Logic high indicates that the returning data is valid.

10www.elitestek.com

HyperRAM Controller Core User Guide

Port Direction Description

native_ctrl_idle Output Logic high indicates that the controller is in idle mode.
After you issue the native_ram_en signal, this signal will take multiple
cycles to respond due to the clock domain crossing operation. Ensure
that the signal is deasserted after issuing a write or read operation.

native_wr_buf_ready Output Write buffer availability. Logic high indicates that the write buffer is full
and the write buffer ignores any incoming write data.

AXI User Interface

AXI Addressing
The AXI interface uses byte addressing, where each address holds 8-bit data. However, for
HyperRAM, the addressing depends on the RAM bit width. For x8 mode, each address holds
16-bit data and for x16 mode, each address holds 32-bit data. The HyperRAM Controller core
converts the AXI address to match the HyperRAM address.

Table 6: AXI Address Conversion Ratio

Mode Divider Ratio

X16 4

X8 2

Unaligned Address Access
The AXI interface does not support unaligned address transfers. Instead, the AXI data width
determines the address access.

AXI Bit Width Base Address Multiplier

256 32

128 16

64 8

32 4

For example, if you request h000012F8 on a 128-bits data width, the HyperRAM
Controller core aligns the address to the nearest base address, which is h000012F0.

11www.elitestek.com

HyperRAM Controller Core User Guide

AXI Read and Write Operation
The following flow diagram explains the AXI read and write operation in the HyperRAM
Controller core.

Figure 4: AXI3 Operation Flow Diagram

Request from AXI Master

Operation

Read Data
Filled with Requested

Length?

Write

NoYes

Yes

ReadWrite

Read from HyperRAM

Release Data to AXI Master

Release Data to Controller

Write to HyperRAM

Idle

Write Data
Filled with Requested

Length?

Native User Interface
The native user interface allows you to access memory in a more direct way, for example,
you can issue an actual RAM address, controlling write or read operations, set RAM burst
transaction length, or perform write mask as per the HyperRAM supported features.
Asynchronous data FIFO is implemented between the user logic and the controller to
facilitate the clock crossing between two different domains.

For write operations, you need to set the write buffer depth as per the targeted RAM write
length. Since the write operation is continuous, you need to fill-up the data buffer before issue
a write trigger. You can store the data in the buffer at any time if the buffer is not full. For
example, if the targeted write length (native_ram_burst_len) is 256 bit:
• If the native data width is 32 bit, the write buffer depth must be at least 256
• If the native data width is 64 bit, the write buffer depth must be at least 128

You calculate the write FIFO depth size with the following formula:
Write FIFO Depth Size = ((DQ Width * 2)/ Data width) * native_ram_burst_len

Note: A single write or read operation should not exceed the 4 us time memory CS# maximum low
time. See Table 5: HyperRAM Controller Native Ports on page 10 for native_ram_burst_len detailed
description.

For read operations, the data returns to the user logic side with native_rd_valid set high
whenever the data is available.

In both write and read operations, you should always monitor the controller status signal,
native_ctrl_idle. This signal should go high after you issue a transaction to ensure the
controller has carry out the request.

12www.elitestek.com

HyperRAM Controller Core User Guide

PLL Auto Calibration Flow
Upon power-up, the AXI wrapper block io_arw_ready is asserted high to avoid taking
any requests from the AXI master before calibration completes. The calibration master
module sends the default setting of configuration register 0 and configuration register 1 to
the HyperRAM and follows by writing 512 bytes of data on address ‘h00000000. The
calibration slave module starts reading data from the HyperRAM continuously and adjusts
the delay by providing different values (incrementing from 0 to 7). This value changes the:
• hbramClk_cal phase (PLL auto calibration)—The hbramClk_cal is used to register

the input of data and read/write data strobe (RWDS) in double-data rate I/O (DDIO)
mode.

• Mux delay module (soft logic calibration)—The mux delay module is a chain of mux to
emulate the delay path to DQ and RWDS.

Once the calibration slave module receives matched data from the HyperRAM, it stores
the delay value. It keeps testing by incrementing the delay value and eventually chooses
the optimum value for those delay values that received matched data. The HyperRAM
Controller core asserts hbc_cal_pass high once to exit calibration and unblock
io_arw_ready signal.

If none of the delay values received matched the data from HyperRAM, the calibration
master module restarts the calibration slave module, but this time it increases the
RDO_DELAY by 1 in the HyperRAM Controller core. The calibration process mentioned
previously is repeated until it finds a matched data. If the RDO_DELAY reaches the
maximum value without matched received data, the calibration is considered failed, and
hbc_cal_pass remains low.

Figure 5: Calibration Flow Diagram

Controller Initialization and Program Configuration Registers

Data Pattern
Matched?

No

No

Yes

Yes

Yes

No

Store Value

Calculate Optimum Value

Increase
Delay Value

Delay Value
Max?

Delay Value
Max?

Write Calibration Data Pattern

Increase
RDO_DELAY Value

Increase
Delay Value

Start

End

13www.elitestek.com

HyperRAM Controller Core User Guide

PLL Manual Calibration Flow
In PLL Manual calibration mode, you need to manually set the RDO_DELAY parameter
and PLL phase,dyn_pll_phase_sel [2:0], settings. You can leverage on the PLL Auto
calibration mode to search for the optimum settings before applying the settings in your
design. Refer to the HyperRAM Controller Example Design on page 23. However, the
fixed settings you use in the PLL Manual calibration mode may not be the optimum setting
when there are variations in voltage and temperature.

HyperRAM Controller Operation
The following waveforms describes timing sequence of signals between the HyperRAM
Controller and interface connections during write and read operations.

AXI Interface

Figure 6: AXI Interface Write Operation Waveform

hbramCLk

hbc_ck_n_lo

hbc_ck_n_hi

hbc_ck_p_lo

hbc_ck_n_hi

hbc_cs_n

hbc_rwds_OUT_LO

hbc_rwds_OUT_HI

hbc_rwds_OE

hbc_dq_OUT_HI

hbc_dq_OUT_LO

hbc_dq_OE

03 Data Mask

03 Data Mask

03

Command Address

Command Address

Latency setting dependent

Data

Data

14www.elitestek.com

HyperRAM Controller Core User Guide

Figure 7: AXI Interface Read Operation Waveform

hbramCLk

hbc_ck_n_lo

hbc_ck_n_hi

hbc_ck_p_lo

hbc_ck_n_hi

hbc_cs_n

hbc_rwds_IN_LO

hbc_rwds_IN_HI

hbc_rwds_OE

hbc_dq_OUT_HI

hbc_dq_OUT_LO

hbc_dq_IN_HI

hbc_dq_IN_LO

hbc_dq_OE

0

3

Command Address

Command Address

Command Address Receiving Data

Command Address Receiving Data

Latency setting dependent

15www.elitestek.com

HyperRAM Controller Core User Guide

Native Interface

Note: Native interface mode only supports linear mode operation and requires the
native_ram_address[31] to always be set to high.

Figure 8: Native Interface Write Operation Waveform
native_clk

native_ram_burst_len[10:0]

native_ctrl_idle

native_ram_address[31]

native_ram_address[30:0]

native_ram_rdwr

native_ram_en

native_wr_datamask[3:0]

native_wr_buf_ready

native_wr_data[31:0]

native_wr_en

00000100

128

F

00000080

Burst0 Burst0 Burst0 Burst0 Burst0

Write operation triggered

Controller starts write request Write operation done

Figure 9: Native Interface Read Operation Waveform
native_clk

native_ram_burst_len[10:0]

native_ctrl_idle

native_ram_address[31]

native_ram_address[30:0]

native_ram_rdwr

native_ram_en

native_rd_valid

native_rd_data[31:0]

00000100

043F8228

128

Read operation triggered

Controller starts read request

16www.elitestek.com

SettingsBlock/Bus

Mode Register
Option

Double Data
I/O Option

Pull Option Clock Inverted
Clock

hbc_rst_n output none – – – –

hbc_cs_n output register – – hbramClk –

hbc_ck_p_HI output register normal – hbramClk90 Yes

hbc_ck_p_LO output register normal – hbramClk90 Yes

hbc_ck_n_HI output register normal – hbramClk90 Yes

hbc_ck_n_LO output register normal – hbramClk90 Yes

hbc_rwds_OUT_HI [1:0] output register normal – hbramClk –

hbc_rwds_OUT_LO [1:0] output register normal – hbramClk –

hbc_rwds_OE [1:0] output register – – hbramClk –

hbc_rwds_IN_HI [1:0] input register resync weak pulldown hbramClk_Cal –

hbc_rwds_IN_LO [1:0] input register resync weak pulldown hbramClk_Cal –

hbc_dq_OUT_HI [15:0] output register normal – hbramClk Yes

hbc_dq_OUT_LO [15:0] output register normal – hbramClk Yes

hbc_dq_OE [15:0] output register – – hbramClk Yes

hbc_dq_IN_HI [15:0] input register resync weak pulldown hbramClk_Cal –

hbc_dq_IN_LO [15:0] input register resync weak pulldown hbramClk_Cal –

17

Table 7: Interface Designer Settings for GPIO

Calibration
PLL Auto Calibration and PLL Manual

Controller Example Design on page 23, which you can use to get started.
17. 易灵思 provides an example design targeting this FPGA as described in HyperRAM
calibration as described in PLL Auto Calibration and PLL Manual Calibration on page
design and then connect your RTL design to the block's pins. You also need to use a PLL for
create any GPIO to connect to it. Instead, you add a HyperRAM block to your interface
The Ti60 F100S3F2 FPGA has an embedded HyperRAM memory, so you do not need to

following tables.
blocks and PLL output clocks in the Efinity® Interface Designer with the settings shown in
When using the HyperRAM Controller with external memories, you need to create GPIO

Interface Designer Settings

HyperRAM Controller Core User Guide

www.elitestek.com

HyperRAM Controller Core User Guide

You must ensure that the step for the dynamic phase shift has 45 degree phase coverage. The
formula to calculate a single phase step coverage is given by:

Single phase step coverage = (0.5 x Post Divider (O) x Final Clock Out) / FVCO x 360

Table 8: PLL Settings for Various Clock Out Frequency
These settings are based on 25 MHz PLL refclk.

Target Clock Out Frequency FVCO Post-Divider (O) Setting

200 3200 4

150 4800 8

125 4000 8

100 3200 8

50 3200 16

Figure 10: PLL Settings Example for 200 MHz Configuration

18

for the hbramClk, hbramClk90, and hbramClk_cal clocks.
shift
Note: 易灵思 recommends that you set the CLK Divider to 4 to get a 45° per phase

www.elitestek.com

HyperRAM Controller Core User Guide

Soft Logic Calibration

Table 9: Interface Designer Settings for GPIO

SettingsBlock/Bus

Mode Register
Option

Double Data
I/O Option

Pull Option Clock Inverted
Clock

hbc_rst_n output none – – – –

hbc_cs_n output register – – hbramClk –

hbc_ck_p_HI output register normal – hbramClk90 Yes

hbc_ck_p_LO output register normal – hbramClk90 Yes

hbc_ck_n_HI output register normal – hbramClk90 Yes

hbc_ck_n_LO output register normal – hbramClk90 Yes

hbc_rwds_OUT_HI [1:0] output register normal – hbramClk –

hbc_rwds_OUT_LO [1:0] output register normal – hbramClk –

hbc_rwds_OE [1:0] output register – – hbramClk –

hbc_rwds_IN_HI [1:0] input none – weak pulldown – –

hbc_dq_OUT_HI [15:0] output register normal – hbramClk Yes

hbc_dq_OUT_LO [15:0] output register normal – hbramClk Yes

hbc_dq_OE [15:0] output register – – hbramClk Yes

hbc_dq_IN_HI [15:0] input none – weak pulldown – –

Table 10: Interface Designer Settings for PLL

Option Output Clock 0 Output Clock 1 Output Clock 2 Output Clock 3

Instance Name hbramClk hbramClk90 – clk0

Clock Frequency 200 MHz 200 MHz – 100 MHz

Phase Shift 0 90 – 0

Feedback Mode – – –

19www.elitestek.com

Generating the HyperRAM Controller Core with the IP Manager
The following steps explain how to customize an IP core with the IP Configuration wizard.

1. Open the IP Catalog.
2. Choose Memory Controllers > HyperRAM Controller core and click Next. The IP

Configuration wizard opens.
3. Enter the module name in the Module Name box.

Note: You can disable the Review configuration generation dialog box by turning
off the Show Confirmation Box option in the wizard.

9. When generation finishes, the wizard displays the Generation Success dialog box. Click
OK to close the wizard.

The wizard adds the IP to your project and displays it under IP in the Project pane.

Generated Files
The IP Manager generates these files and directories:
• <module name>_define.vh—Contains the customized parameters.
• <module name>_tmpl.v—Verilog HDL instantiation template.
• <module name>_tmpl.vhd—VHDL instantiation template.
• <module name>.v—IP source code.
• settings.json—Configuration file.
• <kit name>_devkit—Has generated RTL, example design, and Efinity® project targeting

a specific development board.
• Testbench—Contains generated RTL and testbench files.

20

core with different parameters, or the same IP core for different projects.
wizard is helpful in situations in which you use several IP cores, multiple instances of an IP
generate an example design targeting an 易灵思 development board and/or a testbench. This
ensure that your selections are valid. When you generate the IP core, you can optionally
易灵思® IP cores. The IP Manager performs validation checks on the parameters you set to
The Efinity® IP Manager is an interactive wizard that helps you customize and generate

IP Manager

HyperRAM Controller Core User Guide

Note: Not all 易灵思 IP cores include an example design or a testbench.

Summary tab shows the generation status.
In the Review configuration generation dialog box, click Generate. The Console in the 8.
Click Generate to generate the IP core and other selected deliverables.7.
(Optional) In the Summary tab, review your selections.6.

(Optional) In the Deliverables tab, specify whether to generate an IP core example design 5.
on the options, refer to the Customizing the HyperRAM Controller section.
Customize the IP core using the options shown in the wizard. For detailed information 4.

Note: You cannot generate the core without a module name.

www.elitestek.com

 by default.
targeting an 易灵思 ® development board and/or testbench. These options are turned on

HyperRAM Controller Core User Guide

Customizing the HyperRAM Controller
The core has parameters so you can customize its function. You set the parameters in the
General tab of the core's IP Configuration window.

Table 11: HyperRAM Controller Core Parameters (Memory Tab)

Parameter Options Description

Memory Operating
Frequency

50, 100, 125, 133,
150, 166, 200, 250

RAM operating frequency in MHz.
Default: 200

Memory Data Width 8, 16 RAM bit width.
Default: 16

Memory Size 32, 64, 128, 256 RAM size in Mb.
Default: 256

Calibration Mode PLL Auto Calibration
PLL Manual Calibration
Soft Logic Calibration

HyperRAM calibration mode.
Default: PLL Auto Calibration

RDO DELAY 1, 2, 3, 4, 5, 6, 7, 8 Sets the RDO DELAY in PLL Manual calibration mode.
You can obtain the calibrated RDO settings in PLL Auto
calibration mode first, then apply the settings in the PLL Manual
calibration mode. Refer to the example design for more
information.
Default: 3

PLL Output Select PLL Output 0,
PLL Output 1,
PLL Output 2,
PLL Output 3,
PLL Output 4

Select the PLL output clock in PLL auto and manual calibration
mode.
Default: PLL Output 2

Double Data Rate
Input Mode

RESYNC Indicate the DDIO register mode.
Default: RESYNC

User Interface AXI
Native

Select the user interface.
Default AXI

AXI3 Data Width 128, 64, 32 AXI data width in bit. Applicable to AXI3 interface.
Default: 128

AXI3 AWR Channel
Words

16, 32, 64, 128,
256, 512, 1024

AXI AWR channel FIFO depth. Applicable to AXI3 interface.
Default: 16

AXI3 R Channel
Words

16, 32, 64, 128,
256, 512, 1024

AXI3 W Channel
Words

16, 32, 64, 128,
256, 512, 1024

AXI write channel FIFO depth. Applicable to AXI3 interface.
Default: 256

21

Default: 256
Words to at least 512.
(io_arw_payload_len[7:0] == 8'h255), set the AXI3 R Channel
For example, if burst length is 256 in the data transaction
least double the size of the maximum AXI burst length.
易灵思 recommends that you to set this parameter to at
AXI read channel FIFO depth. Applicable to AXI3 interface.

www.elitestek.com

HyperRAM Controller Core User Guide

Parameter Options Description

Native Data Width 128, 64, 32 Native data width in bit. Applicable to native interface.
Default: 32

Write Buffer Width 16, 32, 64, 128,
256, 512, 1024

Write buffer depth in bit. Applicable to native interface.(5)

Default: 256

Read Buffer Width 16, 32, 64, 128,
256, 512, 1024

Read buffer depth in bit. Applicable to native interface.
Default: 256

Table 12: HyperRAM Controller Core Parameters (Memory Register Tab)

Parameter Options Description

Initial Latency Count 3 Clocks, 4 Clocks, 5 Clocks,
6 Clocks, 7 Clocks

Define initial latency count.
Default: 7 Clocks

Output Drive
Strength

19 Ohms, 22 Ohms, 27 Ohms,
34 Ohms, 46 Ohms,
67 Ohms, 115 Ohms

Define output drive strength.
Default: 34 Ohms

Hybrid Burst Enable Hybrid,
Legacy

Enable the hybrid burst.
Default: Legacy

Wrap Burst Length 16 Bytes,
32 Bytes,
64 Bytes,
128 Bytes

Define wrap burst length.
Default: 32 Bytes
This setting must be the same as the AXI burst
transaction size in wrap mode.

Clock Type Single-Ended Define the master clock type.
Default: Single-Ended

Partial Array Refresh None, Full Array,
Bottom 1/2 Array,
Bottom 1/4 Array,

Bottom 1/8 Array, Top 1/2 Array,
Top 1/4 Array, Top 1/8 Array

Define the partial array refresh.
Default: Full Array

Hybrid Sleep Enable Normal Enable the hybrid sleep mode.
Default: Normal

(5) See Native User Interface on page 12 for more information about setting the buffer depth.

22www.elitestek.com

HyperRAM Controller Core User Guide

HyperRAM Controller Example Design
You can choose to generate the example design when generating the core in the IP Manager
Configuration window. Compile the example design project and download the .hex or .bit
file to your board.

Example Design Target Calibration
Mode

Ti60F225_devkit_axi_pll_auto PLL Auto

Ti60F225_devkit_native_pll_auto PLL Auto

Ti60F100_SiP_axi_pll_auto Ti60 F100S3F2 FPGA PLL Auto

Ti60F100_SiP_native_pll_auto Ti60 F100S3F2 FPGA PLL Auto

Table 14: Example Design Project Files

File Description

top.v Example design top-level wrapper.

ed_encrypt.v Parameterized of the encrypted HyperRAM Controller file. This file is used
by default in the generated example design.

<user_given_ip_name>.v Generated encrypted HyperRAM Controller file based on user
configuration in Efinity IP Manager. Comment-out the EFX_IPM switch in
the top.v (line 16) to compile the example design. The example design is
meant to target the default IP Manager settings for both AXI and native
interface.

efx_ed_hyper_ram_axi_tc.v Traffic generator and checker for AXI user interface.

efx_ed_hyper_ram_native_tc.v Traffic generator and checker for native user interface.

efx_crc32.v CRC32 module used by the traffic generator and checker.

debug_top.v Verilog file for EFX debug module.

efx_clk_monitor.v Verilog file for clock estimator module.

debug_profile.json Virtual I/O Debugger core file. Load this file in the EfinityVirtual I/O
Debugger to customize the example design. See Virtual I/O Debugger
Settings on page 25.

23

钛金系列 Ti60 F225 Development Board

钛金系列 Ti60 F225 Development Board

Important: 易灵思 tested the example design generated with the default parameter options only.

However, the PLL auto calibration logic is still present in the design.
test out the PLL Manual calibration mode via Virtual I/O Debugger Settings on page 25.
All example designs uses the PLL Auto calibration mode. The same design can be used to
Table 13: HyperRAM Controller Example Designs

易灵思 provides the following four example designs:

www.elitestek.com

Hyper RAM
Controller

Traffic Generator
and Data Checker

Ti60 F225
FPGA

HyperRAM

LED0_B

LED0_R
LED1_R

Calibration
Pass

Test_fail

Test_good

HyperRAM
Controller

Traffic Generator
and Data Checker

Ti60
F100S3F2
FPGA

On-Chip
HyperRAM

Calibration Pass

Test_fail

Test_good

24

Figure 11: Example Design Block Diagram

blinking while LED1_R lights up to indicate a failed test.
memory operation is performed correctly. If there is read mismatch, the LED0_R stops
indicating that the calibration is passed and LED0_R keeps blinking to indicate that the
Clock. When you run the example design, you should expect the LED0_B to light up
The design performs the memory continuous write and read check at 200 MHz HBRAM

钛金系列 Ti60 F225 Development Board

HyperRAM Controller Core User Guide

Figure 12: Ti60 F100S3F2 Example Design Block Diagram

 is embedded in the example design.
. You can always monitor the test status via the Efinity® Debugger Virtual I/O feature that3
. Uses the internal oscillator (intosc) clock to generate the user clock and hyperram clock.2
. Uses the internal HyperRAM memory inside the package F100S3F2 FPGA.1

following features:
Development Board and works in any board using Ti60 F100S3F2 FPGA. The design has the
This example performs the same function as the one for the 钛金系列 Ti60 F225

Ti60 F100S3F2 FPGA

www.elitestek.com

HyperRAM Controller Core User Guide

Virtual I/O Debugger Settings
The example design includes Efinity Virtual I/O Debugger core for customizing and
monitoring the design. The following table describes the Virtual I/O sources and
descriptions.

Learn more: Refer to the Debug Perspective: Virtual I/O section of the Efinity Software User Guide for
more information.

Table 15: Virtual I/O Sources and Probes

Name Width Radix Value Description

source0 1 Bin 0 Set to 1'b0 to use PLL Auto Calibration mode (Default).
Set to 1'b1 to use PLL Manual Calibration mode.

source1 1 Bin 0 Set to 1'b1 to enable PLL dynamic phase shift control.

source2 3 Bin 000 Total of 8 steps of the PLL dynamic phase shift settings.

probe0 1 Bin 0 1'b1 indicates that the PLL dynamic phase shift control is enabled.

probe1 6 Bin 101001 Indicates the following settings:
Bit [5:3]: Auto calibrated RDO settings.
Bit [2:0]: Auto calibrated PLL dynamic phase shift settings

probe2 3 Bin 101 Indicates the test status:
Bit 2: test_pass (Value toggles when test is passed)
Bit 1: test_fail (1'b1 indicates failed test)
Bit 0: Calibration pass (1'b1 indicates calibration is passed)

probe3 29 Dec 241850102 Estimated hbram clock frequency.
The accuracy is based on the internal oscillator frequency which can
be up to ±15 % of the desired frequency.

HyperRAM Controller Testbench
You can choose to generate the testbench when generating the core in the IP Manager
Configuration window.

Note: You must include all .v files generated in the /testbench directory in your simulation.

25

www.elitestek.com

script. The testbench simulates the example design with fixed latency mode.
in a terminal application. You must have Modelsim installed on your computer to use this
Modelsim software. To run the Modelsim testbench script, run vsim -do modelsim.do

易灵思 provides a simulation script for you to run the testbench quickly using the

HyperRAM Controller Core User Guide

Revision History

Table 16: Revision History

Date Version Description

November 2023 2.7 Updated supported data rate. (DOC-1535)

April 2023 2.6 Added note about the HyperRAM verified in hardware.
(DOC-1216)
Corrected hbc_rwds_OUT_HI and hbc_rwds_OUT_LO signal
widths. (DOC-1236)

March 2023 2.5 Updated description for Wrap Burst Length parameter.
(DOC-1187)

February 2023 2.4 Added note about the resource and performance values in the
resource and utilization table are for guidance only.
Corrected native_wr_data and native_rd_data ports widths.

September 2022 2.3 Added note about only one HyperRAM Controller can be
instantiated for a single device. (DOC-909)
Updated native port descriptions, added FIFO depth size
calculation, and added native mode operation waveform.
(DOC-846)

March 2022 2.2 Corrected supported bit width to 16x and maximum double data-
rate to 1000 Mbps. (DOC-748)

January 2022 2.1 Added read and write operation waveforms.
Updated resource utilization table. (DOC-700)

December 2021 2.0 Added support for PLL manual calibration mode.
Added support for native user interface.
Updated parameters supported in IP Manager.
Updated HyperRAM Controller ports.
Updated example design.

October 2021 1.1

June 2021 1.0 Initial release.

26

(DOC-553)
and Performance, and Example Design Implementation tables.
Ti60 F225 Development Board and updated Resource Utilization
Updated design example target board to production 钛金系列

based on default parameter settings.
Performance, and Example Design Implementation tables were
Added note to state that the fMAX in Resource Utilization and

www.elitestek.com

	Contents
	Introduction
	Features
	Device Support
	Resource Utilization and Performance
	Release Notes
	Functional Description
	Ports
	AXI User Interface
	AXI Addressing
	Unaligned Address Access
	AXI Read and Write Operation

	Native User Interface
	PLL Auto Calibration Flow
	PLL Manual Calibration Flow
	HyperRAM Controller Operation

	Interface Designer Settings
	PLL Auto Calibration and PLL Manual Calibration
	Soft Logic Calibration

	IP Manager
	Customizing the HyperRAM Controller
	HyperRAM Controller Example Design
	Virtual I/O Debugger Settings

	HyperRAM Controller Testbench
	Revision History

